Encouraging Networks Modularity by Seeding Motifs

Shuguang Li', Jianping Yuan' and Juan Cristobal Zagal®

'School of Astronautics, Northwestern Polytechnical University, Xi’an, Shaanxi, P.R. China
2Department of Mechanical Engineering, University of Chile, Santiago, Chile
lisg81@gmail.com

Abstract

We propose a motifs seeding method to encourage the
emergence of modular structure during network evolution.
Previous studies fail to trigger modularity on freeform evolving
ANNs either when varying environmental factors or the
evolutionary process itself. We extracted statistical profiles of
3-node and 4-node motifs from evolved networks, and then
generated new networks by seeding the most useful 3-node
motif (feed-forward loop, ID:38). A series of retina recognition
experiments was conducted using the seeded networks. The
performance of different algorithms was measured. Our results
indicate that modularity could be encouraged under certain
conditions. We were able to build networks meeting a desired
Z-score.

Introduction

Modularity is a common property of natural and artificial
complex systems. Networked modular structures commonly
arise in biology, computer science, social sciences as well as
many other disciplines. One can recognize modularity by the
presence of clusters of highly interconnected nodes that are
sparsely connected to the remaining ensembles of a networked
structure (Newman, 2006). Although it is known that
modularity is beneficial for the evolvability and robustness of
complex systems, its origin remains to be uncovered. The
questions of how modularity emerges in complex systems and
how it affects the system’s performance during development
have been frequently addressed (Wagner and Altenberg,
1996).

Artificial evolution provides an excellent platform for
exploring the above questions. A variety of systems have been
evolved, including simple equational models, expressed by
linear matrix transformations, artificial neural networks
(ANNs) (Haykin, 1994), representing complex nonlinear
phenomena (Yao, 1999), physical simulations involving
complex machines and even real robotic systems (Lipson,
2000).

It is generally believed that modularity should be an
outcome of an evolutionary process itself. Some experiments
have shown that modularity might speed up an evolutionary
process (Lipson et al., 2002). Apparently the mechanisms of
selection (adequate choice of fitness function), environment
variation and noise generation might play a key role in the
emergence of modular structures.

Most of previous models used in artificial evolution are
relatively simple. Linear models have been used to simplify

ECAL 2011

455

the simulations; the nonlinear ANNs models have also been
constrained by predefined structures or given building rules.
Such limitations could significantly decrease the space of
evolutionary search, and simulation results consequently lack
of generality.

Freeform ANNs have been employed to increase the
generality of systems, but modular networks have not been
found under similar experimental conditions at all.
Fortunately, further experiments show that the modularity has
no conflicts with the evolution of these complex networks (Li
and Yuan, 2011). Therefore more effective and general
methods have to be designed to encourage the emergence of
modularity.

Network motifs are small-scale sub-networks which
frequently appear in complex networks, and they have been
found in many systems. A network motif can be understood as
a pattern or unit of a particular information-processing task. It
has been suggested that in many systems the motifs and
modularity emerge spontaneously and simultaneously during
evolution (Kashtan and Alon, 2005).

Based on these results, we are interested in making use of
the coupled mechanism between motifs and modularity, more
specifically, in this study we attempt to trigger the appearance
of modularity by seeding motifs into ANNs. At first, the
motifs’ characteristics are extracted from well evolved
modular ANNs, and then a series of algorithms is proposed to
construct networks with those characteristics. In addition, the
well studied retina recognition experiment is conducted in
order to make comparisons with previous work.

Background and Previous Work

A common approach to investigate modularity and its effects
on complex systems is to use a computer based simulation of
an adaptive system. A model represents the system-
environment interplay and a fitness function governs species
survival. This computer based method can be seen as a
simulation of natural evolution.

Lipson et al. presented a linear matrix abstraction of an
adaptive system (Lipson et al., 2002). The linear system
represents the transformation of resources and functional
requirements for the survival of certain life-form. By
randomly varying the elements of a matrix representing the
environment, it was possible to observe an increase in the
system’s modularity. The relation between varying rate and
modularity has also been studied by experiments. The authors

claimed that modularity arises in evolutionary systems in
response to variation.

Following previous suggestions, research on environment
variation was further pursued in (Kashtan and Alon, 2005).
A simple feed-forward ANN was used to perform the retina
pattern classification task, which had limited connections and
a small range of weights. The general structural constraints for
evolving the networks were also given. The results show that
modularity and motifs spontaneously evolved in networks
when the goals were switched in a modular manner during
evolution. Their later work also suggested that varying
environment could speed up the evolution under certain
conditions (Kashtan et al., 2007).

To validate whether HyperNEAT could evolve modular
neural networks, Clune et al. investigated a series of retina
recognition experiments (Clune et al., 2010), which were
similar to those used in previous studies (Kashtan and Alon,
2005). Their results show that HyperNEAT has the potential
to produce modular structures in some simple cases, but
unfortunately it was unsuccessful in more complex problems.
In order to enable HyperNEAT to foster modular networks
Verbancsics and Stanley presented a seeding method toward
local connectivity, which successfully encouraged the natural
emergence of modular structures accelerating the simulations
as well (Verbancsics and Stanley, 2010).

Instead of changing the environment, H@erstad proposed
the method of adding noise to the genotype-phenotype (G-P)
mapping (HOQerstad, 2010). He wused the same retina
recognition experiments to test the noised based methods. The
ANNSs and their encoding method were similar to those used
by Kashtan and Alon (2005). Based on a large amount of
simulation experiments, he gave a statistical result, showing
that the novel method could trigger the appearance of
modularity and finally speed up evolution, however, the
switch-goal method does not show the same abilities, which
are totally against the conclusions of previous study (Kashtan
and Alon, 2005).

Recently, a freeform ANN model has been proposed to
investigate the mechanism of modularity and their responses
to the variation of environment and evolutionary process.
Varying scenarios have been experimented, the results show
that the evolution performance has been improved in most
cases, however, the modularity never appeared among those
scenarios. Further experiments show that the proposed
networks have the potential to produce modular networks but
more advanced methods are still needed to encourage the
emergence of modularity on complex networks (Li and Yuan,
2011).

Models, Algorithms and Tools

The ANN Model and Evolutionary Algorithms

To better understand the geometrical properties of complex
networks, such as modularity and motifs, we have presented a
pure topological ANN (Li et al., 2010), which has binary
connection weights and free form directed connections at the
hidden layer (Fig. 1). As the architecture shows (Fig. 1), there
are three groups of neurons: input neurons, hidden neurons
and output neurons, represented as /, H and O respectively.

456

Figure 1: Pure topological neural networks

Therefore, all hidden neurons’ and output neurons’ values are
updated by equation (1) and (2) respectively. The overall
model can be given as:

H()=sinQ_H,(t-D)+D H,O)+ Y. 1,(t) (1)
J>i f<i r
O, ()= (1+exp(-2, H,(1))" ©)

where H; denotes the current state of the i™ hidden neuron,
which is relative to the other hidden neurons (//; and H;) and
the input neurons (/,) that connect to H;. O is the K™ neuron’s
state of all n output neurons. Due to the characteristics of
activation functions, we need to normalize all input raw data
into range of [0, 2 77] before computation. Accordingly, we
have to scale the output value from [0, 1] to the target range as
a final step.

We use the graph encoding method, which directly encodes
connections between two nodes in a “from-to” fashion, and
then organize all those connections as a graph vector structure.
Five evolutionary operators, elitist replication, roulette wheel
selection, sub-graph crossover connection mutation and
transposing mutation have been have been used to evolve our
networks.

Modularity Measurement by Artificial Tracer

We measured the modularity of our ANNs using the artificial
tracer method (Li and Yuan, 2011), which is inspired by the
chemical, isotopic and radioactive tracers. We created the

positive tracers negative tracers

Figure 2: Artificial tracer method

ECAL 2011

digital tracer elements using different markers, such as
positive and negative tracers. To measure the modularity, we
first injected the different tracers into each input node of
network according to their attributes. All tracers are then
passed through other nodes along the directions of information
flow. The output connection will pass a tracer to next node
with the same marker as the parent node. Annihilation takes
place if two tracers with different markers meet at one node.
Then we could roughly calculate the modularity using the
following equation:
n
SR
M — i=0
C

t

&)

where M represents the degree of network modularity, ranging
from 0 to 1. Larger values are assigned to networks with
higher degree of modularity. R; denotes the number of
remaining tracers at the ™ node after annihilations. We
summarize their values as the equivalent of total amount of
remaining connections. One should notice that the R; does not
include all input nodes, since the index i starts counting from
the first hidden node. C, is the total number of connections
within this network. This computation shows the essence of
modularity, which is defined as a relation between the inter-
connections and intra-connections of elemental modules. An
illustration of this procedure is shown in Fig. 2. It should be
noted that this method has a limitation for measuring the
feedback loop structure.

The Retina Pattern Recognition Task

We investigated all the scenarios using a classic retina pattern
recognition test. The retina pattern recognition experiment has
been frequently used in previous studies as a challenging
benchmark. Usually, ANNs have been evolved to recognize
and classify an artificial retina. Each retina consists of eight
pixels (4-pixel wide by 2-pixel height), equally divided into
left and right sides, four pixels per side. The goal is to use an
ANN to recognize objects in the left and right sides of this
retina (Fig.3). As defined in (Kashtan and Alon, 2005), a left
object is defined by three or more black pixels or one or two

L&R /L|R

Figure 3: Retina recognition mission

ECAL 2011

457

black pixels in the left column only. A right object is defined
in a similar way, with one or two black pixels in the right
column only. Those eight pixels each could be abstracted as 1
or 0, then those eights binary values could be treated as a
group of input signals for the ANN. Finally, the single output
(0 or 1) of the ANN is used to decide whether the retina fits
the given Boolean logic questions “L AND R”, or “L OR R”.
The “L AND R” is true only if the object exists at both sides
of the retina, whereas if the object appears in left side or right
side or even both sides, the “L OR R” function is then true.

Motifs Analysis and Seeding

We used the software tools Mfinder (Kashtan et al., 2004) and
Fanmod (Wernicke and Rasche, 2006) for extracting the
motif’s feature from evolved networks. MDRAW (Kashtan et
al., 2004) was used to display the global network topological
architecture. As we know (Kashtan and Alon, 2005), a motif’s
statistical significance can be described quantitatively using
the Z-score.

Z. =(N

score real Nmnd) / ST D (4)
where N, is the number of times the sub-graph appears in the
original network, and N,,,; and STD are the mean and standard
deviation of its frequency of appearances in the randomized

networks respectively.

Algorithm 1:
SeedMotifs (Motif ID, Target Z-score, Net_size ,Max_refine_times)

1: Net_pop < RandomNetworks(Pop_size)

2: for each Net; € Net_pop do

3: App; < EnumerateMotifs(Net;, Motif ID)

4: end for

5: Mean_app < Average of App; in Net_pop

6: STD_app < Standard deviation of App; in Net_pop

7: Target app < Target Z-score*STD _app + Mean_app
8: Seeding model—Initial

9: Net— Q; Current_links < 0; Current_app<«— 0

10: while Current links < Net_size do

11: if Seeding model= Initial then

12: Net— MotifSeedInitial (Net, Motif ID)
13: else

14: Net— MotifSeedRefine (Net, Motif" ID)
15: Refine_count <« Refine_count +1

16: end if

17: if Current_links > Net_size then

18: if Refine_count > Max_refine_times then

19: return Net

20: else

21: Current_app <—EnumerateMotifs (Net, Motif ID)
22: if Current_app < Target_app then

23: Reduce ratio — 1- Current_app / Target _app
24: Net«— ReduceLinks (Net, Reduce_ratio)
25: Seeding_model— Refine

26: else

27: return Net

28: end if

29: end if

30: end if

31: Current links < LinksCount(Net).

32: end while

33: return Net

Here we propose a series of algorithms to seed motifs into
ANNSs and then construct the whole network with expected
characteristics. We define the network as Net (N, E), where N
(n;, i €[1, Net size]) is the set of all nodes in this network and
E (e;, t€[1, Net links]) represents the set of edges. Each
edge e, {From node, To node} consists of a connection
between two nodes. Net pop is defined as a group of Net. The
App indicates the appearance time of specific motifs in
network. As the algorithm 1 shows, given the motifs’ ID and
expected Z-score, the function SeedMotifs() is able to
construct a network by repeatedly seeding single type motifs.
The feedback of current network’s motifs could be obtained
by calling the function EnumerateMotifs(), which will return
the appearance time of the motifs, the details of this function
are given in algorithm 2. Two types of seeding operators have
been designed, which will be used in different stages of
seeding. The MotifSeedlnitial() starts at the beginning of the
process, whereas, the refining model MotifSeedRefine () will
be executed after reducing the relatively useless links by the
ReduceLinks(). It should be noted that the Algorithm 2 shown
here is just for enumerating 3-node motifs, but it can be easily
adapted for detecting other motifs. Other major algorithms
could be found at the end of this paper.

Algorithm 2: EnumerateMotifs(Net, Motif ID)

1: Net_size < the size of current Net

2: En « the edge number of current Motif
3: E—0Q

4: Motif app — 0

5: for each Ce € Net.E do

6: Ce.degree < 0

7: end for

8: for i=1 to En do

9: Em; <« false

10: end for

11: for a=1to Net size-2 do

12: for b=a+1 to Net size-1 do

13: for c=b+1 to Net _size do

14: E — MotifExample(Motif ID, n,, np n.)
15: for =1to En do

16: Em#~EdgeMatch(Net, Me,)
17: end for

18: if all Em,= true then

19: Motif app «— Motif app+1
20: for each Ce € Net.E do

21: Ce.degree < Ce.degree +1
22: end for

23: end if

24: end for

25: end for

26: end for

27: return Motif app

Experiments and Results

Experiments on Performances of Algorithms

Z-score

Actual-Z_score

458

In order to assess the performance of motifs seeding method,
we pursued a group of experiments. We used target networks
having 30 nodes and 120 links. We focus our study on seeding
3-node motifs, especially the feed-forward loop motif (ID:38).
Given a target Z-score of 10 we have executed 10 independent
tests to see the capabilities of seeding speed and convergence,
the average Z-score and its standard deviation are shown in
Fig.4 (a). It is easy to observe that under limited refining times
(10), the Z-score mean rapidly approaches to 10 with a small
standard deviation. Furthermore, different Z-score
requirements have also been tested, and the 10-times average
results are compared with other motif detecting tools as shown
in Fig.4 (b). As it can be seen the algorithms perform better
on the larger Z-score (5 and 10) targets.

Experiments on Motifs Extraction

Before seeding the motifs, we have analyzed the modular
ANNs by the Fanmod software. All networks were evolved
from our previous experiments (Li and Yuan, 2011), resulting
in high values of modularity. We extracted all 3-node motifs
and some significant 4-node motifs form 10 networks, the
statistical results are shown in Fig. 5 and Table.1. From these
results, we could observe some simply statistical attributes
among all networks. As for 3-node motifs, the motifs with ID
of 38 have a mean Z-score of about 20. This means that motif
38 appears significantly more times than others, whereas the
motifs 6, 12 and 36 detected from modular ANNSs are less than

12
I I
f0 { { { T 1 |
8
6
4
5 | — Mean-Z_score
0 |

co
4=

5 6 10
Refine Times

(a)

E Our method B Finmod W Mfinder

10.168 9.24

8.51

Target-Z_score=3 Target-Z_score=5

(b)

Target-Z_score=10

Figure 4: Performances of algorithms:
convergence; (b) accuracy

(a) speed and

ECAL 2011

20

B = Mean-Z_score
10 -
o
Q
il ____m———E'——.__:h
% 0] = = = = &
N
10 |
o Motifs ID
20 & 102 140 164 166 174 238
Fig.5. The 3-node motifs’ significance profile of networks
Top two 4-node motifs Last two 4-node motifs
Network ID Motif ID Z-score Motif ID Z-score Motif ID Z-score Motif ID Z-score
1 2254 9 2252 9.02 2124 -6.73 140 -9.65
2 2254 37.35 2252 20.65 392 -6.71 140 -15.99
3 2254 22.68 2252 18.55 142 -6.79 140 -14.41
4 2254 54.72 2252 40.55 142 -11.89 140 -22.62
5 2254 68.96 2252 46.06 2124 -9.48 140 -24.25
6 2254 6.84 2252 6.18 2124 -4.53 140 -4.88
7 2254 14.26 2252 14.56 2124 -6.92 140 -10.43
8 2254 12.87 2252 11.03 2124 -6.48 140 -12.21
9 2254 7.42 2252 11.13 2124 -5.98 140 -4.362
10 2254 71.7 2252 38.67 2184 -8.49 140 -17.84
Probability P(2254) =100% P(2252) =100% P(2124) =60% P(140) =100%
Average Z- % j I N
score 1D:2254 1D:2252 1D:2124 ID:140
A(2254) =30.58 A(2252)=21.64 A(2124) =-6.67 A(140) =-13.66

Table 2: The 4-node Motifs’ Significance Profile of Networks

in random networks, we name those 3-node motifs as binary
tree motif (ID:6), three-chain motif (ID:12) and reverse binary
tree motif(ID:36) respectively. Moreover, the 4-node motifs
also show very interesting features. The motifs 2254(tetrad-
feedforward loops motif) and 2252(bi-feedforward loops
motif) appear with highest Z-score among all networks. In
contrast, the motif 140(counter-links four-chain motif) seems
to emerge much less than others with a smaller mean Z-score
of about -13.66

Experiments on Retina Recognition

As for the evolutionary simulation, we first constructed a
population of 600 candidate networks by seeding the motifs
38 with a target Z-score of 10 and number of links limited to
120. To reduce the computational complexity, we also
constrained the network size to 30 nodes from which 8 nodes
were assigned as input pixels’ values. One node defined as

ECAL 2011 459

output, and the remaining nodes (up to 21) were free to build
any structures through evolution towards a given task. We set
the maximum generation as 5,000 then the modularity was
estimated as well as the fitness, and the best networks’
structures of each generation were recorded also. In most of
our retina recognition experiments, the data set used for
training consisted of 100 independent retina patterns which
were randomly generated at startup. The general fitness was
designed to reflect the ratio of correct recognition over all 100
samples. We evolved the ANNs under a group of different
regimes, and we run each test 10 times independently for
various experimental scenarios, a list of experiments is shown
in Table 1.

We first evolved the networks to recognize the patterns of
“L AND R” from the predefined data set. Then, similarly as in
previous work, we pursued an interesting MVG regime, in
which the recognition goal switched between “L AND R” and

“L OR R” every 50 generations. A varying environment
regime (VE) was also tested. We temporally changed the
dimension of the data set as a practical method to introduce
environment change. Additionally, following the suggestions
of (Lipson et al., 2002), we designed the VS scenario as the

Experiment Description
Evolving networks to solve the fixed goal
FG-AND L AND R
MVG The goal switched between “L AND R”
and “L OR R” every 50 generations.
The date set changed between 100
MVE samples and randomly selected 50
samples every 50 generations.
The selection mechanism alternated
VS between proportion-based roulette
selection and random selection.
The order of mutation operation and
VM selection operation reverse d every 50
generations.
Same as FG-AND, but the fitness
FG-M function coupled with the value of
modularity

Table 2: The List of Experiments

0.95 | JR—
T M e o — - -
09 | ey o e
2 085 -1""’ NV AN P L ==
E - T Lt ‘{ \w\X}"‘xﬂ{ ,\x*\/ "
k5] ¢
S os
=
g °or —FG
—— MVE
o7 ¥ —— MVG
065 | gl\sﬂ
06 1 1
0 1000 2000 3000 4000 5000
Generation
(@
1
09
0.8 1 :\
T TN e e o e e e e e o e e — — — —
07 [
|
06
|
0.5 |l — Correct ratio
0.4 .
I — — Modularity
03
0.2
0 1000 2000 3000 4000 5000
Generation

(c)

variations of selection process, the proportion-based roulette
selection mechanism sometimes got a failure during evolution,
and then the random selection played a key role for producing
offspring. The VM scheme temporally applied the mutational
operators after the performance evaluation; it thus reversed the
traditional sequence between the selection/replication and the
mutation every 50 generations.

The comparisons of results on different regimes are shown
in Fig.6, results correspond to the average values over 10 runs.
Fig.6 (a) shows the best networks’ fitness records over all
regimes, as we can see, the MVE exhibit a significant higher
fitness than others, and it approaches 0.95 within 4,000
generations, whereas the MVG does not show any advantages
either in fitness value or evolution speed, its fitness value
stays under 0.9.

Fig.6 (b) presents the resulting modularity estimation
results for the best evolved networks of all regimes. The
figure shows a result that a highly modular structure (>0.8)
which never arose among all previous tests. For most of
regimes, the modularity values keep under a low level of 0.5.

Although the mean values of VM cases do not show much
advance than others, one of VM tests evolved a highly
modular structure and with a high correct ratio about 0.9, the
correct ratio and modularity are shown in Fig.6 (c).

1

Figure 6: Results of different experiments

460

09 | —FG
08 - - MVE
o —— MVG
07 | VS
> VM
£ 06}
(_::G 0.5 g\ 7. '*\3‘ X
s Y A Y - iy A
=) 0.4 % a!,{{ 3 ! m"‘{x X A \‘I \w\i‘
= v/ NN L ¥ *}iﬁ X
03 % R
02t
01 |
0
0 1000 2000 3000 4000 5000
Generation
(b)
1
— Correct ratio-R
— — Modularity-R
— Correct ratio-S
— — Modularity-S
0.4
0 1000 Generation 2000 3000
(d)
ECAL 2011

As for the FG-M cases, the comparison between random
based evolution and motifs-seeding based evolution is shown
in Fig.6 (d). It could be easily found that the correction ratio
and modularity, they both approach a relative high level at 0.9
and 0.95 respectively. More importantly, these results indicate
that the motifs seeding method brings an improvement on the
speed of evolution for both correct ratio and modularity.

Discussion

We have proposed a novel method to construct networks by
seeding single type motifs. The performances have been tested
by two experiments. Compared to other motifs-detecting tools,
our method is able to construct networks with predefined Z-
score. The seeding algorithms seem relatively accurate for a
higher Z-score (=5) and the target Z-score could be quickly
achieved within limited iterations. This is mainly attributed to
the operators of refining, after reducing the lowest-degree
edges, the remaining edges have the opportunities to be reused
in new motifs, and then the density of motifs becomes higher.
Since we are aiming at seeding a large population, thus the
current method is accurate enough, however, we have to admit
that the seeding method still have space to be improved on its
accuracy, a real-time feedback mechanism might be useful for
a more precise seeding.

After analyzing the well evolved modular networks, we
have found that for 3-node motifs, the feed-forward loop motif
(ID:38)seems very useful for constructing a modular
architecture, but the binary tree motif (ID:6), three-chain motif
(ID:12) and reverse binary tree motif(ID:36) conflict with
modularity. Similar phenomenon was also found for 4-node
motifs, where the tetrad-feedforward loops motif (ID:2254)
and bi-feedforward loops motif (ID:2252) always appear
much more times than others but the counter-links four-chain
motif (ID:140) is useless for a modular structure. These results
match with previous work very well, it again validates the
idea that motifs could emerge spontaneously as the modularity
arises, but the hidden mechanism between them still
unrevealed. These phenomenons are probably due to the
natural feed-forward information processing of retina
recognition tests, and the inherited relations between full-loop
structures (motifs) and their sub-structures (motifs).

According to the analysis of our results, we ran various
tests after seeding the feed-forward loop motifs into networks,
however in most of cases, the modularity of networks have no
improvement compared to our previous work. Fortunately,
one of the VM tests has evolved a relatively higher modularity
than others. As for all the FG-M cases, the performance of
modularity and correct ratio have been both improved, the
evolved network (Fig.6(d)) presents a nearly perfect modular
structure with a high correct ratio. It is obvious that the
emergence speed of modular structures is higher than previous
results. These results might be attributed to the motifs seeding
mechanism, which offers well organized networks for
evolution.

Could the motifs seeding method generate highly modular
networks regardless the objective of evolution? Since we just
simply seed single motif type into a network, the side-effects
of seeding have been ignored, however they might be essential
for global performances of networks. Based on this

ECAL 2011

461

hypothesis, the multiple-types or hybrid motifs seeding
method is needed in the future study.

Conclusion and Future Work

It is still an open question whether the modularity of ANNs
could be encouraged by varying the environment or the
evolution process, however, previous work has experimented
that the freeform ANNs have difficulty to evolve modular
structure under simple variation of external environment.

In this study we try to encourage the networks’ modularity
by seeding motifs into networks. The motifs statistical features
have been extracted from a group of well evolved modular
networks. The motif seeding algorithms are proposed and the
performances have been evaluated by experiments. We then
seeded the network populations by the feed-forward loop
motifs and conducted classic retina recognition tests by
proposed evolutionary simulation. The modular networks have
been discovered during one of tests under varying mutation
scenarios. By introducing modularity into fitness function, the
modular structures have emerged during evolution;
experimental results show that after seeding motifs to initial
networks, this emergence process could be accelerated further.
These results open the door for triggering modular structure
through seeding motifs.

In future, the statistical result will be given based on more
experiments under different scenarios. The hybrid motifs
seeding algorithms are expected to further encourage the
appearance of modularity with a higher success ratio.

Appendices

Algorithm 4: MotifSeedInitial (Net, Motif ID)

1: Net_size «— the size of Net

2: Success« false

3: while Success=false do

4: N « Random generate different n,, ny, n.

(a,b,cE[1, Net_size])

S: E—0

6: En « the edge number of current Motif
7: for i=1 to En do

8: Em; <« false

9: end for

10: E — MotifExample(Motif ID, n,, ny n.)
11: for =1to En do

12: Emq« EdgeMatch(Net, Me,)

13: end for

14: if all Em,= true then

15: Success«— true

16: NetE —E

17: end if

18: end while
19: return Net

Algorithm 3: ReduceLinks (Net, Reduce_ratio)

1: Current_links < LinksCount(Ner)

2: Net.E— ranked edges by their degrees as a descending order
3: Reduce_start—Current_links* (1-Reduce_ratio)

4: fori= Reduce start to Current links do

5: Ce;— @ (Ce,ENet.E)

6: end for

7: return Net

Algorithm 5: MotifSeedRefine (Net, Motif ID)

1: Net _size « the size of Net
2: Success<— false
3: Total degree— degree sum of all edges Ce € Net.E
4: for each Ce € Net.E do
S: Ce.s_ratio— Ce.degree/ Total degree
6: end for
7 while Success=false do
8: Se «— the edge Ce selected by
roulette mechanism based on s_ratio
9: n.«—Se.from_node ; ny«Se.to_node;
10: n. < Random generate n. (cE[1, Net_size], n.# n, or ny)
11: E—0Q
12: En « the edge number of current Motif
13: for i=1 to En do
14: Em; <« false
15: end for
16: E — MotifExample(Motif ID, n,, ny n.)
17: for =1to En do
18: Em~EdgeMatch(Net, Me,)
19: end for
20: if all Em,= true then
21 Success<«— true
22: Net.E —E
23: end if
24: end while
25: return Net

References

Angeline, P. J.,, Saunders, G. M., and Pollack, J. B. (1993). An
evolutionary algorithm that constructs recurrent neural networks.
IEEE Trans. Neural Networks, 5(1): 54-65.

Clune, J., Beckmann, B. E., McKinley, P. K., and Ofria, C. (2010).
Investigating whether hyperneat produces modular neural networks.
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pages 635-642.

Floreano, D., Diirr, P., and Mattiussi, C. (2008). Neuroevolution: from
architectures to learning. Evolutionary Intelligence, 1(1): 47-62.

462

Haykin., S. (1994). Neural Networks: A Comprehensive Foundation.
Prentice Hall PTR, Upper Saddle River, NJ.

Hoverstad, B. A. (2011). Noise and the Evolution of Neural Network
Modularity. Artificial Life, 17(1):18.

Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U. (2004). Efficient
sampling algorithm for estimating subgraph concentrations and
detecting network motifs. Bioinformatics, 20(11): 1746-1758.

Kashtan, N., and Alon, U. (2005). Spontaneous Evolution of Modularity
and Network Motifs. Proceeding of National Academy of Sciences,
102(39):13773-13778.

Kashtan, N., Noor, E., and Alon, U. (2007). Varying environments can
speed up evolution. Proceeding of National Academy of Sciences,
104(34): 13711-13716.

Li, S., Yuan, J., Yue, X., and Luo, J. (2010). The binary-weights neural
network for robot control. Proceedings of the International
Conference on Biomedical Robotics and Biomechatronics (BioRob
2010), pages 765-770.

Li, S., and Yuan, J. (2011). The Modularity in Freeform Evolving Neural
Networks. Proceedings of the IEEE Congress on Evolutionary
Computation 2011. pages 2593-2598.

Lipson, H., Pollack, J.B. (2000). Automated Design and Manufacture of
Atrtificial Lifeforms. Nature, 406: 974-978.

Lipson, H., Pollack, J.B., and Suh, N.P. (2002). On the Origin of Modular
Variation. Evolution, 56(8):1549-1556.

Moriarty, D. E. and Miikkulainen, R. (1997). Forming Neural Networks
Through Efficient and Adaptive Coevolution. Evolutionary
Computation, 5(4): 373-399.

Newman, M. E. J. (2006). Modularity and community structure in
networks. Proceeding of National Academy of Sciences, 103(23):
8577-8582.

Verbancsics, P., and Stanley, K. O. (2010). Constraining Connectivity to
Encourage Modularity in HyperNEAT, Technical Report, CS-TR-
10-10, Department of Electrical Engineering and Computer Science,
University of Central Florida.

Wagner, G. P. and Altenberg, L. (1996). Complex adaptations and the
evolution of evolvability. Evolution, 50: 967-976.

Wernicke, S. and Rasche, F. (2006). FANMOD: a tool for fast network
motif detection. Bioinformatics, 22(9): 1152—1153.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the
IEEE, 87:1423-1447.

ECAL 2011

