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Abstract: In this paper, we study the suitability of using simulation in the evolution of locomotion in a quadruped robot. The
goal of the evolution is to design a control system that produces fast gaits. We evolve gaits in simulation, and then the best
controllers are transferred into the real custom built robot and compared with their simulated versions. The results show effective
locomotion, with a 1.8 times improvement in speed over earlier results. Finally, we investigate some measures to reduce the
difference between simulated and real locomotion.
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1 INTRODUCTION
It can be a challenging task to manually design and opti-

mize a control system that enables a robot to walk, partic-
ularly an unconventional robot in a complex environment.
Evolutionary design allows us to automate this otherwise
time consuming and intellectually demanding process [1, 2].
Furthermore, it provides a general procedure that can be ap-
plied to various robot morphologies, and can even be used for
adapting to changes in the environment or in the robot itself
such as damage to or loss of limbs [3]. Importantly, evolution
is unconstrained by engineering conventions, and is thus able
to find solutions that a human is unlikely to find.

For time-consuming tasks like robotic locomotion, it be-
comes impractical to perform large-scale evolutions involv-
ing tens of thousands of evaluations on the target hardware,
due both to time needed and to mechanical wear. For ex-
ample, in [4], a total of 1217 evaluations were performed on
the target hardware, spread across 7 different learning algo-
rithms; and as those authors point out, this number is much
smaller than desirable in terms of achieving both high quality
results and statistical significance, and certainly took a great
deal of time to carry out. (See [5] for another such example.)
To overcome this issue, evaluations can instead be performed
in a simulator. With sufficient CPU power, many individuals
can be evaluated in simulation in the time it would take to
evaluate one in reality, while at the same time eliminating
mechanical wear and unreliable human intervention.

Due to unavoidable inaccuracies in the simulator, one en-
counters what is known as the “reality gap” [6], that is, a
difference in performance between the simulation and the
real system. Despite this problem, reasonable-quality solu-
tions can still be found by evolution which at least qualita-
tively reflect the behavior predicted by simulation when they
are transferred to reality. However, tuning the simulator to
reduce the reality gap should do more than just make de-
signs more transferable; we expect it will allow simulated
agents to cope with and exploit otherwise inaccurately or
completely unrepresented dynamics of the system, thus re-

Fig. 1: Schematic view of the robot with the nine joints and
associated servos labeled.

shaping or opening up new territory for evolution to explore.
Several interesting approaches are currently being explored
for dealing with the issue of the reality gap [7, 8, 9, 10].

In this work, we investigate the suitability of using sim-
ulation in the evolution of locomotion in the QuadraTot
quadruped robot. The robot has some unconventional char-
acteristics, such as limited motion of the legs and a hip joint
allowing the body to twist; see Fig. 1. Given this hardware,
the goal of evolution is to design a control system that pro-
duces the fastest gait – i.e., the gait that results in the greatest
distance covered in a fixed time period. The best controllers
that come out of this process are then transferred into the real
robot and compared with their simulated versions. Finally,
we investigate some measures to reduce the difference be-
tween simulated and real locomotion.

2 IMPLEMENTATION
The QuadraTot robot, pictured in Figs. 1 and 2, has 9

joints: two in each leg and one at its center, each actuated by
a Dynamixel AX-18A (AX-12A in the “knee” joints) servo.
Fully extended, it measures 68 cm across; crouched, 34 cm.
With the power supply separate from the body in order to



Fig. 2: The robot in reality and in simulation. Note the spher-
ical markers for motion capture on the real robot. The white
lines show the shapes for the simulation model.

minimize the strain on the relatively weak servos, the robot
weighs 1.4 kg. The body parts1 were printed on the Objet
Connex 500 3D Printing System. One feature was added be-
yond the original design of the robot: silicone rubber “socks”
were attached to its feet to improve traction.

To simulate the dynamics of the QuadraTot robot, we em-
ployed the NVIDIA PhysX physics simulation software li-
brary. PhysX provides accurate approximations of 3D rigid
body motions, collision detection, and motorized joints, to
name a few of the features relevant to our work. We built
a model of the robot in PhysX to capture the salient aspects
of its design such as the lengths of its body parts, positions
and types of its joints, and the masses and rough shapes of its
parts. The building blocks for the part shapes were boxes of
various sizes and orientations. A detailed 3D mesh was pre-
sented using OpenGL to make visualization of the simulation
more appealing and intuitive. The shapes and the overlying
mesh can be seen in Fig. 2. The servos were modeled as
motorized revolute joints, where the motor force was propor-
tional to the difference between the actual and target angle;
joint parameters were calibrated by observing the response
of the real servos.

1Available online at http://creativemachines.cornell.
edu/evolved-quadruped-gaits
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Fig. 3: The motor control function.

To control the motors in each of the robot’s joints, we
implemented a simple periodic control system consisting of
a parameterized smoothed pulse, illustrated in Fig. 3. All
controllers operate at the same frequency, but have different
curve parameters, as well as individual phase shifts, φ. The
attack parameter decides the time between t0 and t1, pause0
the time between t1 and t2, decay the time between t2 and t3,
and pause1 the time between t3 and t4. The controller output
is further parameterized by selecting the center angle for the
pulse, as well as the amplitude.

Our reason for choosing such a simple system is threefold:
First, the control system is not the focus of this work; second,
in nature, locomotion on flat ground is observed to involve
simple periodic motion; and third, the relatively small num-
ber of parameters reduces the size of search space for the
genetic algorithm (GA), thus speeding up evolution.

For the evolutionary runs, we used the Simple GA method
of the GALib software library. The fitness value for the ex-
periments was calculated as the average speed of the robot
during the evaluation, i.e., the total distance traveled divided
by the simulated evaluation time. The joint parameters were
encoded for each of the 9 joints in a binary genome with a
total length of 314 bits. A population of 200 individuals was
evolved for 300 generations. The bit-flip mutation probabil-
ity was set to the inverse of the genome length. One point
crossover was used with a probability of 0.2.

To observe the motion of the real robot, we employed an
infrared camera-based NaturalPoint OptiTrack motion cap-
ture system consisting of 8 cameras. Four reflective markers
were placed on the robot core to identify its motion. The po-
sition of one of these markers, sampled at 60Hz, was logged
for the experimental results in the next section.

3 EXPERIMENTAL RESULTS
Where possible, we set simulator parameters to exactly

known values, such as the force of gravity and the masses
and dimensions of body parts. We set joint angle limits to
constrain the motion to a range consistent with the physical
robot: the inner joints could swing between -106◦and 75◦,
the outer joints between -141◦and 125◦, and the hip joint be-
tween -53◦and 53◦. Joint motor forces were set to a very
large value. We guessed, rather than measured, the coeffi-
cients of static and dynamic friction to both be 1.0. Finally,
we chose values for the skin width (i.e., the depth to which
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Fig. 4: Horizonal position plot, gait 1 over 10 seconds.

objects are allowed to interpenetrate before being considered
to have collided), the joint constraint solver iteration count,
and the simulator time step as recommended by the PhysX
documentation and from prior experience to 0.05 cm, 200
iterations, and 1

60 s, respectively.
With the simulator thus configured, we ran the GA to pro-

duce some gait patterns, and selected two of the fittest gaits
from the final generation based on their qualitatively differ-
ent strategies. The selected gaits were transferred into the
real robot and their positions were recorded2 for a period of
10 seconds. The resulting gait speeds are compared in Table
1. We then tuned the simulator as an initial attempt to reduce
the reality gap for these two gaits. Both static and dynamic
friction coefficients were reduced to 0.4. Also, to reproduce
a perceived differential slipping tendency in the real robot’s
feet, anisotropic friction was added such that the feet would
slip more easily from side to side (friction coefficients set
to 0.1 in this direction) than front to back (friction coeffi-
cients set to 0.8 in this direction). Figs. 4 and 5 compare the
real and simulated (both before and after tuning) motions for
these gaits.

4 DISCUSSION
We observe from the experiments that the GA found

promising gaits given the robot design and the imposed re-
strictions. The gaits shown in Figs. 4 and 5 employ two

2Gait videos: http://folk.uio.no/kyrrehg/quad
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Fig. 5: Horizonal position plot, gait 2 over 10 seconds.

Table 1: Evolved gait speeds

gait simulated real (avg 3)
gait 1 18.3 cm/s 10.5 cm/s
gait 2 16.4 cm/s 17.8 cm/s
best in [4] NA 9.7 cm/s

different strategies that could be similar to what a human
designer might implement: the former is reminiscent of a
quadruped animal; and the latter uses a worm-like locomo-
tion strategy where two of the legs serve mostly as support.
However, it appears that the solutions could be further tuned
to improve performance. The parameter-based model im-
posed several constraints, including the amount of rotation
possible in each joint, thus limiting the range of motion of
the limbs. If a greater range of motion were allowed, this
would result in both a larger search space and the possibil-
ity of exceeding physical limitations; however, the simulator-
based approach would be more suitable for this than risking
invalid combinations on the target hardware. We noticed that
the core joint of the robot was not exploited noticeably in
the evolved gaits. This may be due to the fact that its move-
ment was restricted due to frequent motor overload on the
real robot. A better simulation of the allowed forces could
open up a path towards higher quality gaits.

The observed locomotion speeds were larger than those in
found by previous online evolution experiments. Our best



gait in reality achieved 17.8 cm/s, whereas highest speed
found by [4] was only 9.7 cm/s. This difference could be
explained by the different control systems and their parame-
terization or by the larger number of evaluations performed
in the evolutionary search with the simulator. Additionally, it
should be noted that there are some differences in the experi-
mental setups, in particular with regard to the surface friction
and the material used for coating the robot feet, as well as
some differences in servo models.

As expected, we observed a difference between the sim-
ulated robot behavior and the behavior in the real robot, al-
though it was not as large as anticipated. From the observa-
tions of the first gait, the qualitative impression of the behav-
ior is the same, but the real robot turns faster. It seems that
this is because of differences in friction between the simula-
tor and reality, which might also account for the more jagged
trajectory observed in the position plot. The reality gap ob-
served in the second gait was smaller; although the trajec-
tories were not identical, there was little impact on the final
position. We suspect that friction played a smaller role in this
gait due to the different contact motion between the legs and
the surface, and the initial results from tuning the simulator
support this claim. These results indicate that the simulator
gives a fairly realistic model of the real robot and that addi-
tional tuning is likely to further improve the realism.

We observed during the experiments on the real robot that,
after several runs, the motors seemed to lose energy, eventu-
ally shutting down with an overload error. We tried to miti-
gate this problem by disconnecting the power between runs.
This should be addressed in future experiments by carefully
tuning the model of the motor strengths in the simulator and
possibly also instructing the evolution to discourage locomo-
tion which stresses the motors too much.

5 CONCLUSION AND FUTURE WORK
We have developed a simulation environment for an un-

conventional robot design, where learning has previously
only been performed on the real robot. This has allowed de-
sign of locomotion through a GA in which evaluations were
performed in a simulator, saving time, resources, and wear
associated with running EAs on real robots. The results us-
ing a simple parametric approach are better than an earlier
approach using real world evolution for parametric gaits as
well as HyperNEAT. A promising path of future work would
be to investigate the use of more sophisticated control algo-
rithms on the proposed evolutionary setup, for even more ef-
ficient locomotion. Some of the evolved gaits suffer from
the reality gap when transferred to the real robot, whereas
others perform closer to the simulated behavior. Tuning of
some simulator parameters seems to be one way to improve
transferral to reality. Future work should investigate vari-
ous mechanisms for facilitating the transfer from simulated
solutions to real ones, including more sophisticated motion
capture of the robot limbs, better and more automated tuning
of the simulator, as well as evolving for robustness, e.g. by
introducing noise into the simulation.
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