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Motivation

• Overall goal: uncovering the relationships between phenotypic char-
acteristics and fitness, in both evolutionary biology and evolutionary
computation.

• Common approach: perform selection based on fitness and study the
phenotypes that evolve.

• Problem: computational evolution tends to be highly convergent, which
makes difficult to understand of how fitness would change along key
phenotypic dimensions ‘had evolution searched there’

Contribution: the MOLE algorithm

We introduce the MOLE (Multi-Objective Landscape Exploration) algo-
rithm to generate phenotype-fitness maps.

•Main idea: explicitly select for fit organisms in all areas of a phenotype
landscape, where the axes of that landscape are defined by phenotypic
dimensions of interest.

•MOLE algorithm:
• choose two relevant dimensions;
• create a grid G to store the result (e.g. a 200 × 200 grid); initialize
each value to −∞;

• use a multi-objective evolutionary algorithm (e.g. NSGA-II) to opti-
mize:

optimize

{
Fitness(x)∑
i∈Nx

1
ki
||px − pi||

- x: a candidate solution,
-Nx: the set of the 8 closest neighbors of x in the map,
- px: the 2D position of x in the map,
- pi: the 2D position of i in the map,
- ki: the number of times that the position of i has been hit during
the search;

• at each point, store the maximum fitness found so far.

Results

• Task: 10-dimensional Rastrigin function
• Dimensions: first two dimensions

• Task (left): evolve neural networks for pattern recognition (8-pixels
retina problem, Kashtan and Alon (2005))

• Dimensions: number of nodes vs. number of connections. Circles in-
dicate the best solution from 30 runs of a standard EA (some overlap).

• Top map: Phenotype-fitness map obtained with an unconstrained di-
rect encoding (Mouret andDoncieux, 2012). TheMOLE algorithm found
98 distinct perfect solutions (bright yellow areas) whereas 30 runs of
a standard EA foun d only 6 perfect solutions (bright yellow circles).

• Bottommap: Phenotype-fitnessmap obtainedwith amore constrained
encoding (Kashtan and Alon, 2005). The MOLE algorithm found 221
perfect solutions whereas a standard EA found 15.
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• Task: evolve neural networks for pattern recognition (8-pixels retina
problem, Kashtan and Alon (2005))

• Dimensions: structural complexity (off-diagonal complexity, Claussen
(2007)) vs. dynamic complexity (compression complexity of the neu-
rons’ ouputs, see Li and Vitányi (2008))

• Leftmap: Phenotype-fitnessmap obtainedwith the unconstrained en-
coding (Mouret and Doncieux, 2012). MOLE found 2536 distinct perfect
solutions whereas a standard EA found 6 (bright yellow circles).

• Rightmap: Phenotype-fitnessmap obtainedwith themore constrained
encoding encoding (Kashtan and Alon, 2005). MOLE found 1690 perfect
solutions whereas a standard EA found 15.

Conclusions

•Maps illuminate relationships between the dimensions, although the
illumination is not flawless, as some perfect solutions found by the
standard EA were not located by MOLE.

•Maps allow the exploration of non-trivial dimensions (complexity, mod-
ularity, size of solutions, ...).

•Maps allow researchers to compare the potential of different encod-
ings.

•MOLE finds more optimal solutions than standard evolutionary algo-
rithms.

Source code and video
http://chronos.isir.upmc.fr/~mouret/mole
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Li, M. and Vitányi, P. (2008). An introduction to Kolmogorov complexity
and its applications. Springer-Verlag New York Inc.

Mouret, J.-B. (2011). Novelty-based multiobjectivization. In New Hori-
zons in Evolutionary Robotics: Extended Contributions from the 2009
EvoDeRob Workshop, pages 139–154. Springer.

Mouret, J.-B. andDoncieux, S. (2012). Encouraging behavioral diversity in
evolutionary robotics: an empirical study. Evolutionary Computation,
20(1):91–133.


