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Motivation

o Overall goal: uncovering the relationships between phenotypic char-
acteristics and fitness, In both evolutionary biology and evolutionary
computation.

o Common approach: perform selection based on fitness and study the
phenotypes that evolve.

» Problem: computational evolution tends to be highly convergent, which
makes difficult to understand of how fitness would change along key

phenotypic dimensions ‘had evolution searched there’

Contribution: the MOLE algorithm

We introduce the MOLE (Multi-Objective Landscape Exploration) algo-
rithm to generate phenotype-fitness maps.

o Mainidea: explicitly select for fit organisms in all areas of a phenotype
landscape, where the axes of that landscape are defined by phenotypic
dimensions of interest.

o MOLE algorithm:

e choose two relevant dimensions;

e create a grid GG to store the result (e.g. a 200 x 200 grid]; initialize
each value to —o0;

» use a multi-objective evolutionary algorithm (e.g. NSGA-II] to opti-
mize:

o Fitness(x
owwm{z#mm
ieN,
- x: a candidate solution,
- N,: the set of the 8 closest neighbors of x In the map,
- p,: the 2D position of x in the map,

- p;: the 2D position of 2 in the map,

- k;: the number of times that the position of ¢ has been hit during
the search;

o at each point, store the maximum fitness found so far.

Results MOLE Theoretical map
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o Task: 10-dimensional Rastrigin function
» Dimensions: first two dimensions
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o Task (left): evolve neural networks for pattern recognition (8-pixels
retina problem, Kashtan and Alon (2005))

o Dimensions: number of nodes vs. number of connections. Circles in-
dicate the best solution from 30 runs of a standard EA (some overlap).

o Top map: Phenotype-fitness map obtained with an unconstrained di-
rect encoding (Mouret and Doncieux, 2012). The MOLE algorithm found
98 distinct perfect solutions (bright yellow areas) whereas 30 runs of
a standard EA foun d only 6 perfect solutions (bright yellow circles).

o Bottom map: Phenotype-fitness map obtained with a more constrained

encoding (Kashtan and Alon, 2005). The MOLE algorithm found 221
perfect solutions whereas a standard EA found 15.
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» Task: evolve neural networks for pattern recognition (8-pixels retina
problem, Kashtan and Alon (2005))

» Dimensions: structural complexity (off-diagonal complexity, Claussen
(2007)) vs. dynamic complexity (compression complexity of the neu-
rons’ ouputs, see Li and Vitanyi (2008))

o Left map: Phenotype-fitness map obtained with the unconstrained en-
coding (Mouret and Doncieux, 2012). MOLE found 2536 distinct perfect
solutions whereas a standard EA found 6 (bright yellow circles).

» Right map: Phenotype-fitness map obtained with the more constrained

encoding encoding (Kashtan and Alon, 2005). MOLE found 1690 perfect
solutions whereas a standard EA found 15.

Conclusions

e Maps illuminate relationships between the dimensions, although the
ILLlumination is not flawless, as some perfect solutions found by the
standard EA were not located by MOLE.

» Maps allow the exploration of non-trivial dimensions (complexity, mod-
ularity, size of solutions, ...).

» Maps allow researchers to compare the potential of different encod-
Ings.

» MOLE finds more optimal solutions than standard evolutionary algo-
rithms.

Source code and video

http://chronos.isir.upmc.fr/~mouret/mole
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