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ABSTRACT
Evolutionary problem decomposition techniques divide a
complex problem into simpler subproblems, evolve individ-
uals to produce subcomponents that solve the subproblems,
and then assemble the subcomponents to produce an over-
all solution. Ideally, these techniques would automatically
decompose the problem and dynamically assemble the sub-
components to form the solution. However, although sig-
nificant progress in automated problem decomposition has
been made, most techniques explicitly assemble the com-
plete solution as part of the fitness function. In this pa-
per, we propose a digital-evolution technique that lays the
groundwork for enabling individuals within the population
to dynamically decompose a problem and assemble a so-
lution. Specifically, our approach evolves specialists that
produce some subcomponents of a problem, cooperate with
others to receive different subcomponents, and then assem-
ble the subcomponents to produce an overall solution. We
first establish that this technique is able to evolve specialists
that cooperate. We then demonstrate that it is more effec-
tive to use a generalist strategy, wherein organisms solve the
entire problem themselves, on simple problems, but that a
specialist strategy is better on complex problems. Finally,
we show that our technique automatically selects a gener-
alist or specialist strategy based on the complexity of the
problem.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation—Self-modifying machines

General Terms
Experimentation.
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1. INTRODUCTION
Traditionally, evolutionary algorithms (EAs) contain a

single population in which each individual encodes a com-
plete solution to a problem. EAs work well for problems
with a search space that can be reasonably well-explored,
given the computational resources available to the popula-
tion. However, as the complexity of the problems addressed
using EAs increases, the size of the search space and the
amount of time required to search for a satisfactory solution
grows rapidly. Problem decomposition has been proposed
to address this limitation [15]. Problem-decomposition EAs
decompose a problem into simpler subproblems, individuals
produce subcomponents (where each subcomponent is a so-
lution to a subproblem), and then the subcomponents are
combined to obtain a solution to the overall problem [15].
One of the overarching challenges of problem-decomposition
EAs is to have the population automatically and dynami-
cally both decompose the problem (if necessary) and assem-
ble a complete solution.

Although significant progress has been made in problem
decomposition [3, 6, 10, 15, 17, 19], most techniques evolve
specialists that produce subcomponents and explicitly re-
combine the subcomponents as part of the fitness function
to produce an overall solution [15, 19]. A notable excep-
tion is the approach taken by some learning classifier sys-
tems (LCSs), which evolve specialists that produce and then
dynamically assemble the subcomponents to form a solu-
tion [10, 17]. For example, this LCS technique been used to
evolve the behavior of robots in real-world applications [4].
However, LCSs are designed for rule-based problems and
are thus restricted in their application. To enable problem-
decomposition EAs to solve complex, non-rule-based prob-
lems, we must explore other techniques for dynamically de-
composing a problem and assembling a solution.

In this paper, we propose a technique for problem decom-
position that lays the groundwork for evolving specialists
that automatically decompose a problem, produce subcom-
ponents, and then dynamically assemble the subcomponents
to form a complete solution. Specifically, our technique cur-
rently evolves specialists that produce subcomponents and
cooperate with other neighboring specialists to collect all of
the subcomponents necessary to form a complete solution.
Because an individual organism collects all of the subcom-
ponents required for the complete solution, this approach
has the potential to be used to address problems that re-
quire more complex assembly procedures, which can also be
evolved.



We implement our approach in Avida [14], a digital-
evolution platform previously used to study the origin of
complex features [9], the evolutionary design of modular-
ity [12], evolutionary robustness [8, 18], and the evolution of
altruism [1, 5]. Within an Avida experiment, a population
of self-replicating computer programs exists in a user-defined
computational environment and is subject to mutations and
natural selection. These“digital organisms”compete for lim-
ited resources and are subjected to mutations.

For this study, we provide instructions and infrastructure
to allow organisms to cooperate in order to obtain subcom-
ponents produced by neighboring organisms using indirect
reciprocity [11]. Whereas direct reciprocity involves the ex-
change of altruistic donations during repeated interactions
between the same two individuals, indirect reciprocity in-
volves the exchange of donations for reputation, where fu-
ture donations are directed toward individuals with a high
reputation [11, 16]. In this study, an organism’s reputa-
tion is an accurate reflection of its behavior that is auto-
matically updated. Specifically, an organism can donate a
subcomponent to a neighboring organism. As a result of
this donation, the donor organism’s reputation automati-
cally increases. This improved reputation, in turn, increases
the probability that the donor organism will subsequently
receive donations of subcomponents from others. Thus, an
organism can assemble a complete solution by combining the
subcomponents it has produced itself with subcomponents
that it has received from others.

We demonstrate the potential for this approach using a
variant of the binary string cover problem presented in [15].
Whereas the original binary string cover problem considers
a set of individuals to be a solution, we explicitly require
individuals to cooperate to assemble a complete solution. In
this case, assembling a solution simply requires an organism
to collect all of the subcomponents. First, to test whether
this approach can evolve cooperation, we force individuals
to be specialists that produce only one subcomponent and
cooperate to solve the complete problem. Next we compare
the performance of a population of generalists that each at-
tempt to solve the entire problem to the performance of a
population of specialists. On simpler problems, the popula-
tion of generalists outcompete the population of specialists.
However, as the complexity of the problem increases, the
population of specialists outperforms the population of gen-
eralists. Lastly, we demonstrate that when allowed to be
either generalists or specialists, the population composition
automatically changes to solve the problem most efficiently.
Specifically, we enable both generalists and specialists to
coexist within a population. We run experiments of vary-
ing complexity and show that the population composition
changes from consisting of primarily generalists to primarily
specialists as the problem complexity increases.

2. RELATED WORK
Numerous techniques have been proposed to automate the

evolution of problem decomposition [3, 6, 10, 15, 17, 19].
In general, these techniques evolve specialists that produce
subcomponents. The overall solution is considered to be
a group of specialists comprising either one representative
member of each species (e.g., [6, 15, 19]) or an EA-selected
team (e.g., [3, 10, 17]).

Several approaches assemble the subcomponents as part
of the fitness function [15, 19]. Specifically, the cooperative

coevolution architecture [15] evolves two or more species in
completely isolated populations. Cooperation between these
species occurs at the time of fitness evaluation, when indi-
viduals from one species are evaluated with representatives
from each of the other species. The nature of these col-
laborations is determined by the user, as is the choice of
representatives from each species, but the number of species
is determined by the algorithm automatically. Additionally,
Yong and Miikkulainen [19] apply the cooperative coevolu-
tion architecture to evolve coordinated predator behavior in
a prey-capture task. Three Enforced SubPopulations [7] are
created, each of which evolves an artificial neural network
that represents the behavior for one predator [19]. During
the fitness evaluation, a representative neural network from
each subpopulation is placed in a simulated environment
and the reward for captured prey is split equally among
all representatives present. Unfortunately, these approaches
are only applicable in problems where the general form of
between-species collaborations is known a priori.

Other approaches enable the EA itself to dynamically as-
semble the subcomponents. These approaches are typically
based on a market economy. For example, some learning
classifier systems form teams of individuals that bid for their
subcomponents to be used as part of the solution to the
classification problem [10, 17]. Additionally, Cornforth and
Kirley [3] propose a non-rule based approach to problem
decomposition using a market-based model, where agents
group together in a hierarchical fashion to form complex
problem solutions. One limitation of this approach is that
individuals do not dynamically evolve subcomponents of the
problem, but rather innately represent preformed subcom-
ponents.

3. AVIDA
Figure 1 depicts an Avida population and the structure

of an individual organism. Each digital organism consists
of a circular list of instructions (its genome) and a virtual
CPU that executes those instructions. The standard Avida
instruction set is Turing complete and is designed so that
random mutations will always yield a syntactically correct
program, albeit one that may not perform any meaningful
computation [13]. Within their virtual environment, organ-
isms can produce and consume resources, aid neighboring
organisms through altruistic donations, and sense or change
various properties of the environment.

An Avida population comprises a number of cells, where
a cell is a compartment in which an organism can live. Each
cell can contain at most one organism, and the size of an
Avida population is bounded by the number of cells in the
environment. Cells are connected to each other via a con-
figurable topology, generally a grid or torus, that defines
the neighborhood of each cell. An organism’s neighbors are
the organisms that live in the cells adjoining its own cell.
Additionally, each organism has a facing, which is one con-
nection to a neighboring cell. Organisms are able to change
their facing by executing rotate instructions.

Organisms are self-replicating meaning that the genome
itself must contain the instructions to create an offspring.
When an organism replicates, a cell to contain the offspring
is selected from the environment at random, and any pre-
vious inhabitant of the target cell is replaced (killed and
overwritten) by the offspring. Each population starts with
one or more organisms that are capable only of replication,



and different genomes are produced through random muta-
tions introduced during replication. Mutation types include:
replacing the instruction with a different one, inserting an
additional, random instruction into the offspring’s genome,
and removing an instruction from the offspring’s genome.
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Figure 1: The AVIDA platform

Organisms can perform tasks that allow them to metab-
olize resources from their environment. Metabolizing ben-
eficial resources increases an organism’s merit, which de-
termines the rate its virtual CPU will execute instructions
relative to the other organisms in the population. For exam-
ple, an organism with a merit of 2 will, on average, execute
twice as many instructions as an organism with a merit of
1. Since digital organisms are self-replicating and compete
for space, a higher merit (all else being equal) results in an
organism that replicates more rapidly, spreading throughout
and eventually dominating the population.

The amount of merit that an organism gains for complet-
ing a task depends on the type and abundance of resources
associated with the task. These resources may be unlimited,
such that they are always available and the merit increase
gained for completing them is effectively a user-defined con-
stant. Or the resources may be limited, such that the merit
increase gained is dependent on the amount of the associated
resource that is currently available. A small amount of each
limited resource continually flows into the environment to re-
plenish the resource stores. When many organisms execute
a task associated with a limited resource, the amount of re-
source available decreases until additional organisms would
receive more merit by completing a task associated with a
different resource. Cooper and Ofria have shown that using
limited resources in Avida leads to greater diversity and that
with them multiple species can stably coexist in an asexual
population [2]. In this paper, we use tasks associated with
both limited and unlimited resources.

4. EXPERIMENTAL SETUP
In this section, we provide an overview of the binary string

production problem that we use to illustrate our technique,
discuss the modifications to Avida that were necessary to
allow specialists to cooperate, and provide the standard con-
figurations used for our experiments.

4.1 Binary String Production Problem
The original binary string cover problem, which we are

using a variation of, considers each individual in a popula-
tion to represent a binary string x. The objective of each
individual is to match as strongly as possible a set V of N
binary vectors called strings, where each string vi in V is of
length l. Let x be a match value, where bi is the number of
bits exactly matched (value and placement) between x and
vi. Formally, x is defined as follows:

• If bi < l
2
, then S(x, vi) = 0.

• If bi ≥ l
2
, then S(x, vi) = ( 2bi

l
− 1)2.

Unless the strings in set V are identical, no single value of
x will be able to perfectly optimize all objectives, and thus
trade-offs must occur. The EA’s solution to the binary string
cover problem is typically considered to be a set of individ-
uals in the final population [6, 15]. If individuals within the
population specialize, then they are able to produce a better
overall solution. Goings and Ofria have previously demon-
strated the ability of Avida to develop specialists that cover
multiple niches in this problem [6].

Whereas the original binary string cover problem stati-
cally composes subcomponents by considering a set of in-
dividuals (one from each species) to represent the solution,
this variation increases the difficulty of the original problem
by requiring each individual to produce or acquire all of the
strings and assemble the complete solution. We refer to this
variation as the binary string production problem. Thus, the
objective of the individual is, given a set V of binary strings,
to produce multiple exact copies of V . We refer to a perfect
copy of V as a complete set.

For our experiments, we use several variants of the bi-
nary string production problem, where each variant differs
in complexity. Specifically, we define 4-bit, 8-bit, 16-bit, and
24-bit variants. Each variant has two strings that constitute
V : the first string is all zeros and the second string is all
ones. For example, the 4-bit variant uses strings 0000 and
1111 and the complete set is {0000, 1111}.

4.2 Avida Extensions
To enable organisms to specialize and cooperate to pro-

duce complete solutions, we extended the organism infras-
tructure, defined instructions to allow organisms to produce
complete sets, and defined tasks that described the desired
outputs. At a high level, an organism creates a string in its
buffer and then produces copies of the string. The copies
can be donated to increase its reputation or used as parts
of a complete set. Tasks are associated with the quality of
strings produced, quantity of strings produced, and also the
quantity of complete sets produced.

4.2.1 Organism Infrastructure
Figure 2 (a) depicts the four key elements of an Avida

organism that are used to produce solutions to the binary
string production problem. First, an organism has a buffer
in which it is able to construct strings. The buffer is ini-
tially empty and is exactly the length of a string. A pointer
into the buffer determines where insertion will occur. The
pointer starts at the first element, and moves one position
each time a bit is inserted into the buffer. After the last
element has been written, the pointer returns to the first
element and future insertions overwrite existing bits. For
example, Figure 2 (a) depicts a buffer of length 4 (for the
4-bit variant of the string production problem). Second, an



organism has two counters that track the number of copies
of each string that the organism has at its disposal, where a
copy could be either produced by the organism or received
as a donation. For example, Figure 2 (a) depicts the two
counters (c0000 and c1111). The number of copies of a string
is limited to a user-defined amount. For these experiments,
the limit is 10 copies per string. A copy can be used as part
of a complete set or as a donation. Third, an organism has
a tag that identifies which vector it is best at producing.
An organism initially inherits the tag of its parent. As the
organism replicates, its tag and the tag of its offspring are
updated to reflect the vector it is best at producing. Lastly,
an organism has a reputation that is automatically updated
as a result of the organism’s cooperative actions. An organ-
ism’s reputation is determined using a variant of a standing
strategy [16] as follows 1:

• reputation = 0: An organism has neither donated a
string nor received a string. All organisms are born in
this state.

• reputation = -1: An organism has not donated a
string, but has received a string.

• reputation = 1 An organism has donated a string
and may or may not have received a string.

4.2.2 Instructions
Table 1 depicts the instructions we added to the stan-

dard Avida instruction set [13]. Instructions insert-0 and
insert-1 insert a 0 or a 1 into the organism’s buffer. Figure 2
(b) depicts an organism after it executed insert-0. Instruc-
tion prod-string reads an organism’s buffer. If the string in
the buffer perfectly matches one of the vectors in V , the
organism’s counter for this vector is incremented by 1; oth-
erwise, the instruction has no effect. For example, Figure 2
(c) depicts the buffer of an organism that has constructed
string 0000 and then executed prod-string. The counter for
the string 0000, c0000 is incremented. The buffer remains the
same after the prod-string instruction is executed. Thus, an
organism may consecutively execute the instruction several
times to create multiple copies of the same string.

The remainder of the new instructions allow organisms to
cooperate through indirect reciprocity. To donate a string,
an organism executes the instruction donate-string, which
decrements the organism’s counter for the string and incre-
ments the corresponding counter of the neighbor. An organ-
ism’s tag determines which string it donates. For example, if
an organism’s tag is 0000, then the organism donates string
0000. Donations between organisms of the same tag would
not assist organisms in constructing a complete set and thus
are not allowed. Additionally, if an organism does not have
any copies of the string it donates (e.g., c0000 = 0), then the
donation does not occur and the counters and reputations
of the organism and its neighbor remain unchanged.

Organisms are able to sense their own reputation and the
reputation of their facing neighbor using the get-reputation
and get-neighbors-reputation instructions, respectively. When
these instructions are executed, the reputation value is
placed in one of the organism’s registers. Lastly, the rotate-to-
rep-tag instruction rotates an organism to face the neighbor
with the highest reputation of the opposite tag. If the or-

1We also experimented with reputation strategies in which
an organism’s reputation increased with each subsequent do-
nation. These strategies did not qualitatively change our
results.
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Figure 2: The infrastructure that allows Avida or-
ganisms to produce strings, donate strings, and co-
operate using indirect reciprocity.

ganism does not have a neighbor of the opposite tag, then
its facing remains unchanged. If multiple neighboring or-
ganisms of equally high reputation all have the opposite tag,
then the organism is rotated to face a random organism from
this set.

Table 1: Additional Avida instructions that allow
organisms to produce strings, donate strings, and
selectively cooperate with neighbors on the basis of
reputation.

Instruction Description
insert-0 Insert 0 into the buffer
insert-1 Insert 1 into the buffer
prod-string If the string in the buffer is a vector

vi, increment the counter of vi

donate-string Donate a copy of a string to the fac-
ing neighbor

get-reputation Get the organism’s reputation
get-neighbors-reputation Get the neighbor’s reputation
rotate-to-rep-tag Rotate to the neighbor with a differ-

ent tag and the highest reputation

4.2.3 Tasks
We defined two types of tasks associated with resources

that reward organisms for the binary string production prob-
lem. The first task, MatchString, is associated with a limited
resource and is used to ensure that the population main-
tains the ability to produce both strings. The performance
of an organism on MatchString is proportional to the qual-
ity of the string in its buffer when the organism replicates.
A MatchString task is defined for both strings in V (e.g.,
MatchString0000 and MatchString1111) and the value of the task
is defined using the same formula as the original bit string
cover problem. Additionally, if the organism has produced
the string that perfectly matches the vector itself, then it
receives a score of 1. The formula is:

• If bi < l
2
, then MatchString(org, vi) = 0.

• If bi ≥ l
2
, then MatchString(org, vi) = ( 2bi

l
− 1)2.

• If cvi ≥ 1, then MatchString(org, vi) = 1.



The MatchString task also labels the organism with a tag
that corresponds to the vector it is best at producing. Specif-
ically, an organism’s tag corresponds to the vector whose
MatchString task had the highest quality.

The second type of task, CompleteSet, is associated with
an unlimited resource that rewards organisms for produc-
ing complete sets. Specifically, the task quality is equal to
four times the number of complete sets plus the number of
additional copies of either string. Task quality is partially
defined based on strings that cannot be used as part of a
complete set to reward organisms for production quantity.
Formally, let clow be the counter with the lowest balance,
ballow. Let chigh be the counter with the higher balance,
balhigh. The formula for computing the reward of the Com-
pleteSet function is:

CompleteSet(org) = (4 ∗ ballow) + (balhigh − ballow)

4.3 Experimental Setup
Our experiments all used a common set of configurations.

Each experiment comprised 20 replicate runs to account for
the stochastic nature of the evolutionary process. Each run
had 3,600 cells (and thus a maximum population size of
3,600 organisms) arranged in a toroidal topology. Each run
started with two untagged asexual self-replicating organisms
that constructed a string of the appropriate length for the
variant of the problem being attempted. One organism con-
structed a random string and the other constructed the com-
plement of the random string. Seeding the organisms with
strings assists the organisms in solving the bit string pro-
duction problem because, to receive the resources associated
with completing a MatchString task, an organism must con-
struct a string that has over 50% of the bits correct.

The starting length of the organisms was 100 instructions.
When an organism replicated, each instruction had a 0.0075
probability of mutating as it was copied. Additionally, each
genome had a 0.05 probability of an insertion mutation and
a 0.05 probability of a deletion mutation. The offspring of an
organism was placed in a random location in the torus. This
mass action replacement strategy ensures that neighboring
organisms are unrelated and thus cooperation would not be
simply because of kin selection [1, 5]. The runs lasted for
50,000 updates, where an update is the standard unit of
time in Avida and corresponds to the time required for each
organism to execute, on average, 30 instructions.

5. EXPERIMENTAL RESULTS
In this section, we demonstrate our problem decomposi-

tion technique on the bit string production problem. First,
to ensure that organisms are able to dynamically cooper-
ate to solve the problem, we require all organisms to be
specialists and exploit the information produced by other
organisms to cooperate. Because the specialist strategy in-
curs the overhead of cooperation, a generalist strategy may
outperform the specialist strategy on simple problems. To
test this, we compare the performance of a population of
specialists and a population of generalists on the bit string
production problem. We then enable organisms to be gener-
alists or specialists and demonstrate that Avida varies the
population composition in response to the complexity of the
problem.

5.1 Evolving Specialists
Our first set of experiments test whether Avida can evolve

a population of specialists that cooperate to solve binary
string production problems of varying complexity (i.e., 4-
bit, 8-bit, 16-bit, and 24-bit strings). We force all organisms
to be strict specialists, meaning that they produce strings
that match at most one string and therefore must cooperate
to create complete sets. To ensure all organisms are strict
specialists, we modified the prod-string instruction so that
an organism can produce copies only of the string that it
is tagged with. Thus, if an organism is tagged with string
0000, then it can only produce copies of string 0000 and
must receive string 1111 as a donation.

Although we provide the instructions necessary for the
organisms to cooperate using indirect reciprocity, the pop-
ulation must evolve an algorithm that effectively uses these
instructions to produce complete sets. It is possible that a
population could cooperate using a different technique. To
isolate the critical information necessary to enable cooper-
ation among unrelated specialists, we ran four treatments
that varied the ability of the organisms to sense tags and
reputations. Specifically, the four treatments are:

• Organisms do not have the ability to sense either tags
or reputation. (no rep, no tags)

• Organisms have the ability to sense tags, but not the
ability to sense reputation. (no rep, tags)

• Organisms have the ability to sense reputation, but
not the ability to sense tags. (rep, no tags)

• Organisms have the ability to sense both reputation
and tags. (rep, tags)

We ran 20 replicates for each variant of the binary string
production problem and evaluated the results according to
the number of complete sets produced and the number of
organisms that produced complete sets. The relative rank-
ing of the treatments was the same for all variants. Figure 3
depicts the results of varying the ability of the organisms
to sense tags and reputations for the 16-bit variant. Each
treatment produced significantly different results (p < 0.05,
Mann-Whitney U test). Specifically, Figure 3 (a) depicts the
number of organisms that produced complete sets and Fig-
ure 3 (b) depicts the number of complete sets produced by
the organisms. The solid lines are the mean of 20 treatments
and the dotted lines are one standard error of the mean.
Overall, organisms without either tag or reputation informa-
tion (green line with triangles) performed poorly; whereas,
organisms with both tag and reputation information (blue
line with circles) achieved both the largest number of organ-
isms producing complete sets(∼2,000) and also the largest
number of complete sets produced (∼10,000).

Counterintuitively, organisms with reputation informa-
tion, but not tag information (black line with upside down
triangles) produced fewer complete sets than organisms
without any information. We performed further investiga-
tions and found out that, although these organisms are pro-
ducing fewer complete sets, their average fitness exceeds that
of organisms without any information. Essentially, their fit-
ness is greater because they are producing more copies of a
single string. Additionally, organisms with tag information,
but not reputation information (red line with squares) per-
formed slightly better than organisms with no information,
but not nearly as well as organisms with both reputation
and tag information (p < 0.05, Mann-Whitney U test).
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Figure 3: Number of organisms that produce com-
plete sets (top) and the number of complete sets
produced (bottom) with four different treatments
that vary the tagging and reputation information
available for the 16-bit variant. Populations where
organisms have both sources of information signifi-
cantly outperform populations that lack either.

Based on these experiments, we conclude that the spe-
cialist strategy is affected by the organism’s ability to sense
both tags and reputation. For the remainder of the exper-
iments that we describe in this paper, organisms can sense
both reputation and tag information.

5.2 Comparing Isolated Populations of
Generalists and Specialists

The primary motivation for using a problem decomposi-
tion approach is to address problems of increased complex-
ity that are difficult for a standard EA to address. Next, we
compare the performance of strict specialists to strict gen-
eralists, where strict generalists do not have a donate-string
instruction and thus are unable to cooperate. To create a
complete set, a strict generalist must first create one string
(e.g., 0000) in its buffer, produce copies of the string, create
the other string in its buffer (e.g., 1111), and then produce
copies of it.

Our dual hypotheses for these experiments are that:
1. If a problem is simple, then a population of general-

ists will outperform a population of specialists, since
it is easier to produce both strings than to cooperate.
Thus, for simpler variants of the problem, the general-
ists treatments should both have more organisms that

produce complete sets and have more complete sets
produced than the specialist experiments.

2. If the problem is complex, then the specialists will out-
perform the generalists, since it is easier to cooperate
than to produce both strings. Thus, the specialist ex-
periments should both have more organisms that pro-
duce complete sets and have more complete sets pro-
duced than the generalist experiments for the more
complex variants of the bit string production problem.

We tested these hypotheses by running 20 replicates of
strict generalists and 20 replicates of strict specialists for
each of the four variants of the bit string production prob-
lem. The results of the experiments are depicted in Figure 4,
where the red lines with squares represent the generalists
and the blue lines with circles represent the specialists. For
the simpler 4-bit and 8-bit variants, the generalists outper-
form the specialists both in terms of the number of organ-
isms producing complete sets and also in terms of the num-
ber of complete sets produced (p < 0.05, Mann-Whitney U
test). However, for the more complex 16-bit and 24-bit vari-
ants, the specialists outperform the generalists (p < 0.05,
Mann-Whitney U test). The performance of the special-
ists slightly increases with the complexity of the problem.
Specifically, approximately the same number of specialist
organisms (∼2000) produced approximately the same num-
ber of complete sets (∼10,000) for the 8-bit, 16-bit, and
24-bit treatments. In contrast, the success of the generalists
was dependent upon the complexity of the problem. For
the 4-bit and 8-bit treatments, ∼2,400 generalist organisms
produced ∼20,000 complete sets, but for the 16-bit and 24-
bit treatments, ∼400 generalists produced ∼4,000 complete
sets. These results support our hypotheses that complex
problems favor specialists, whereas simpler problems favor
generalists.

5.3 Mixed Populations of
Generalists and Specialists

Ideally, a problem decomposition approach would evolve
generalists or specialists depending on the complexity of the
problem. To test the ability of our technique to automati-
cally vary population composition, we enable both types of
organisms to coexist within a population.

Our hypothesis for the next set of experiments is: Given
a population in which organisms could be either generalists
or specialists, the composition of the population will change
depending on the complexity of the problem. Specifically, if
the problem is simpler, then the generalists should dominate;
if the problem is more complex, then the specialists should
dominate. However, enabling organisms to be either gener-
alists or specialists should not negatively affect the ability
of the population to solve the problem.

To test this hypothesis, we ran 20 replicates for each of the
bit string production problem variants in which organisms
could be either generalists or specialists. Specifically, we
both enabled the organisms to donate and did not limit them
to producing one string. For these results, we consider an
organism to be a specialist if it produces only one string and
to be a generalist if it produces both.

The green line with triangles in Figure 4 depicts the re-
sults of a mixed population of generalists or specialists. In
general, the performance of the mixed population toward
the end of the run is equivalent to that of the isolated treat-
ment (either generalist or specialist) that performs the best.
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Figure 4: The number of organisms producing complete sets and the number of complete sets produced by
generalists, specialists, and mixed populations of both generalists and specialists across the four bit string
production problem variants. For simpler problems, generalists outperform specialists; whereas, for more
complex problems, specialists outperform generalists. Mixed populations tend to perform at least as well as
the isolated populations of generalists or specialists.
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Figure 5: The population composition of mixed populations comprising both generalists and specialists for the
four variants of the bit string production problem. In general, the more simple variants have a predominantly
generalist population and the more complex variants have a predominantly specialist population.

Additionally, the number of complete sets produced by the
mixed populations for the 16-bit and 24-bit variants is higher
than that of the isolated populations of both specialists and
generalists (p < 0.05, Mann-Whitney U test). Therefore,
we conclude that the mixed population does not negatively
affect Avida’s ability to solve the problem.

The average population compositions from the four vari-
ants are depicted in Figure 5, where the red lines with
squares represent the percent of organisms that are gen-
eralists and the blue lines with circles represent the per-
cent of organisms that are specialists. As the complexity of
the problem increases, so does the prevalence of specialists.
Specifically, in the 4-bit and 8-bit variants, generalists tend
to dominate the population (p < 0.05, Mann-Whitney U
test). However, in the 16-bit and 24-bit variants, the spe-
cialists tend to dominate the population (p < 0.05, Mann-
Whitney U test).

Although the average population compositions make it
appear as if the number of generalists in a population grad-
ually increases, for the individual replicates, once a general-
ist strategy for producing complete sets is found, it quickly
sweeps the population. Thus, in many cases, a specialist

strategy tended to thrive early on, probably because it is
simpler to evolve, but was quickly replaced when a general-
ist strategy evolved. Three possible factors that could influ-
ence the ability of generalist strategy to sweep the popula-
tion are: First, because generalists do not rely on others for
donations of subcomponents, they are a more robust strat-
egy. Second, generalist organisms are, most likely, stingy
in the sense that they do not donate. Figure 6 depicts the
percent of altruists (organisms that donate a string) in the
population, the percent of specialists, and the percent of
generalists for the 16-bit variant with a mixed population.
The percent of altruists almost perfectly tracks the percent
of specialists, but appears unrelated to the percent of gener-
alists. Because generalists do not donate, as the number of
generalists increases, it becomes increasingly challenging for
the specialists to find neighboring organisms with which to
cooperate. Third, generalists likely benefit from some dona-
tions from specialists, since a generalist is indistinguishable
from a specialist that has not yet donated in that both have
a reputation of 0.
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Figure 6: The percent of organisms that are gen-
eralists, specialists, and altruists. The percent of
altruists in the population closely tracks the num-
ber of specialists in the population, indicating that
generalists are not making donations.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a digital-evolution based

approach to problem decomposition. Our approach enables
individuals to be either generalists that independently solve
the problem or specialists that each contribute to solving
the overall problem. We have demonstrated the feasibility
of this technique using several variants of the binary string
production problem. As the complexity of the problem in-
creases, the population composition automatically changes
from predominantly generalists to predominately specialists.
However, once a generalist strategy evolves within the pop-
ulation, it quickly dominates.

Our next step in this work is to increase the complex-
ity of the problem by adding additional strings or longer
strings. Additionally, we will apply our approach to prob-
lems that require complicated steps to assemble the overall
solution, such as with complex arithmetic formulae. To ap-
ply this approach to arithmetic problems, we will expand
the Avida infrastructure to enable organisms to specialize
in performing a mathematical operation (e.g., addition) and
to donate the results of the operation (e.g., the sum). An
organism’s reputation will be used to indicate both the qual-
ity and quantity of the results it donates. An organism’s tag
will reflect the operation it has specialized in. Finally, we
are investigating the effect of changing from the explicitly
designed reputation framework we provided to an evolved
reputation and tag system.
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