
Investigations in Meta-GAs: Panaceas or Pipe Dreams?

Jeff Clune1*, Sherri Goings2*, Erik D. Goodman3, William Punch2

Michigan State University, East Lansing, MI, USA
1 Dept. of Philosophy, jclune@msu.edu

2 Dept. of Computer Science, {goingssh, punch}@cse.msu.edu
2 Dept. of Electrical and Computer Engineering, goodman@egr.msu.edu

* Both authors contributed equally to this paper

Abstract. A meta-GA (GA within a GA) is used to investigate evolving the
parameter settings of genetic operators for genetic and evolutionary algorithms
(GEA) in the hope of creating a self-adaptive GEA. We report three findings.
First, the meta-GA can adapt its genetic operators to different problems and
thereby perform well on average across diverse problems. Second, the meta-GA
can change its parameters during the course of a run—seemingly a good
idea—but this behavior may actually decrease performance. Finally, the genetic
operator configurations the meta-GA evolves are far from optimal. We
conclude that, while meta-GAs show promise for automating some parameter
configurations, they are not likely to replace manually configured genetic and
evolutionary algorithms without innovative alteration.

1 Introduction

One of the great promises of genetic and evolutionary algorithms (GEAs) was that
they would solve difficult problems with minimal human intervention. The reality has
become that getting GEAs to solve challenging problems usually requires a lot of
esoteric knowledge about choosing a correct configuration of GEA parameters from
an enormous number of possible setups. This is because what constitutes a good GEA
setup—which genetic operators to use and with what frequency—changes from
problem to problem [7], [17]. It is challenging and time consuming to come up with
satisficing parameter configurations, and a failure to do so typically leads to
unsatisfactory results [3], [4]. Furthermore, in some problems the optimal parameter
settings may be different for various phases of the search process [4], [15], [8], [12].
This issue of problem ‘temporality’ only complicates the challenge of finding
appropriate GEA settings for a given problem by adding this further dimension to the
search space. Given that GEAs are good at finding suitable solutions amongst large
multi-dimensional search spaces, it makes sense to try to find good GEA parameter
setups using a GEA.

The research in this paper focuses on using a self-adaptive ‘meta-GA’ to evolve
GA parameter settings. A meta-GA consists of a group of subpopulations that are
each running under a unique configuration of genetic operators. The fitness of each
subpopulation relative to other subpopulations is evaluated according to a fitness

2 Jeff Clune1*, Sherri Goings2*, Erik D. Goodman3, William Punch2

function different from the one being used within each subpopulation (i.e. a ‘higher
level’ fitness function). Those configurations of genetic operators that are deemed
more fit increase in frequency in subsequent generations. This is in contrast to the
numerous attempts to put control parameters for genetic operators (e.g. mutation rate)
directly on the chromosomes of individuals (reviewed in [8] and [4]). It is also in
contrast to a predetermined rule specifying changes in operators over time, as used in
simulated annealing [8]. Many variations on the theme of meta-GAs have been
explored. Some evolve the operators with which to start a run, but do not allow for
mid-course corrections via changing parameters during a run (e.g. [5]). Others
initialize each subpopulation to have one unchanging configuration, and vary the size
of each subpopulation according to its fitness, increasing the amount of searching
done with good parameter sets [12]. This method limits the search space to those
parameter sets initially present. It also prevents genetic operators from being
individually tuned or coordinated in parallel (as in co-evolution)[4]. A further
approach is to evolve one or a few genetic operators but not to allow a large set of
operator types and frequencies to co-evolve (e.g. [14], [5], [10], [6], [1], [2]). Such
approaches, however, fail to take advantage of the complex interactions between the
types and frequencies of genetic operators, and may therefore overlook fruitful
combinations of them [4]. Of all the work we know of, Lis and Lis utilize the most
comprehensive set of evolvable operators [11]. They evolve the mutation probability,
crossover rate, and population size, but do not include things such as crossover,
mutation, and selection types, which can be important elements of the mix [4].

The general consensus of the above work seems to be that using GEAs to tune
GEA parameter settings shows promise [4]. However, most of the approaches still
incorporate a large amount of knowledge from the scientist and do not take advantage
of all the opportunities possible with self-adaptive GEAs [13], [4], [8]. In this paper,
we investigate what happens when we move towards a GA that does not require fixed
parameter settings because it evolves many of them during all phases of the run.
Wang et al. created such a meta-GA [15], [16]. They evolved both the type and
frequency ofthe application of genetic operators in an island model. Their preliminary
results indicated that this relatively ‘parameterless’ meta-GA converged to an
appropriate setup. They also suggest, anecdotally, that the meta-GA is discovering
that different settings are preferable at different times during a run. In this paper we
extend their work by doing enough runs to allow statistical analysis and adding
experiments that help investigate to what extent this meta-GA may enable GEAs to
deliver on their original promise of solving challenging problems with minimal
human involvement.

We test the efficacy of the meta-GA by running it on two different toy problems:
the ‘counting ones’ problem and a 4-bit ‘deceptive trap.’ If the meta-GA is superior to
traditional GAs then it should be able to do better on both problems on average than
any specific set of genetic parameters does on both problems on average. The
concepts of ‘generalists’ and ‘specialists’ help frame the issue. There are GA settings
that are specialized to individual problems. These will do well on the problem they
are tuned to and perform poorly on most other problems. Conversely, there should
exist general GA parameter settings whose performance is mediocre, but satisficing,
for a large range of problems. We are interested in seeing whether the meta-GA can
combine the best of both worlds by being a generalist, in that it will work well on a

Investigations in Meta-GAs: Panaceas or Pipe Dreams? 3

diverse set of problems, yet show the benefits of specialization, by becoming a
specialist on the problem it faces. To satisfy this criterion, the meta-GA should prove
its worth as a generalist by doing better than specialist configurations across different
problems, as well as show near-specialist competency by performing nearly as well as
specialists on the problems the specialists are tuned to. Additionally, we are
interested in seeing whether the meta-GA can take advantage of the potential for
changing the setup of the genetic operators over time during different phases of
evolving its solution. Finally, we compare the configurations the meta-GA evolves
versus those more commonly used by GA scientists.

2 Methods

We perform all of our experiments using the software package DAGA2 (available
on the MSU GARAGE website at http://garage.cps.msu.edu/) [15] , [16]. DAGA2 is
a two-level GA that evolves simultaneously on both levels. At the first level of
DAGA2 are traditional GAs, each of which consists of a subpopulation of candidate
solutions to some problem and an associated set of operators which govern the
evolution of that subpopulation. The second level consists of 36 of these level-1
subpopulations and evolves the parameters associated with them. A diagram of the
DAGA2 topology is shown in figure 1.

Fig. 1. On the left is an example subpopulation containing a number of candidate solutions and
one chromosome of operator settings that governs the evolution of those solutions. On the right
is the level-2 DAGA population containing many of these subpopulations. The small arrows
show the flow of data being sent to the sample subpopulation from its three neighbors.

The parameters that may be modified at the first level are crossover type, crossover
rate, genomic mutation rate, selection type, and the parameters associated with each
selection type (tournament size for tournament selection and the scaling factor for
roulette selection). The parameter ranges (shown in Table 2) were chosen to be wide
enough for flexible search while minimizing effects of mutational balance. Each
subpopulation’s initial parameters are randomly initialized within their respective
ranges.

4 Jeff Clune1*, Sherri Goings2*, Erik D. Goodman3, William Punch2

Table 1. Ranges for parameter settings in DAGA2

Crossover Type {1-pt, 2-pt, Uniform}

Crossover Rate {0-100%}

Genomic Mutation Rate
On Chromosomes Length 1000: {0-5}
On Chromosomes Length 3000: {0-15}

Selection Type
{Tournament, Roulette, Stochastic

Remainder Sampling?]

Tournament Size {0-50}

Roulette Scaling Factor {0-5}

After finding in hundreds of preliminary runs that tournament selection was
selected for overwhelmingly in every single run, we locked this selection type in to
speed up experiments. Mutation type was fixed as bit mutation, since this was the
type relevant to our test problems. While this is not a completely parameterless meta-
GA, since other entries could be added to each type category (e.g. additional selection
types such as rank selection) and other things, like representations, could be evolved,
it is a move toward a system in which the various parameters interact and we can thus
see whether they successfully co-evolve.

 The second level of DAGA2 evaluates the “fitness” of each subpopulation as the
fitness of its best individual and acts as a traditional GA would in setting up a
competitive environment in which the best populations propagate more often than
others. The 36 randomly initialized subpopulations are placed on a toroidal grid and
every five generations each receives information from three neighbors: the
subpopulations directly above, to the right, and to the upper-right diagonal of it. The
most fit neighbor is then calculated and is used in a subpopulation’s second-level
evolution process, consisting of migration, mutation, and crossover, in that order.
Migration involves a subpopulation receiving copies of the top 7% of organisms from
its best neighbor and placing them in its own population. The organisms to be
replaced are chosen randomly with the caveat that the best individual in the
population is never overwritten. Second-level mutation causes each parameter value
of a subpopulation to mutate with a 20% probability. In 90% of these parameter
mutations, a delta is taken randomly from a normal distribution (with a mean of 0 and
a standard deviation of 1/20th of the range for that parameter setting) and added to the
current parameter value. The other 10% of the time the parameter is simply changed
to a random number in the given parameter range. Second-level crossover (uniform)
consists of a subpopulation copying its best neighbor’s level-2 parameters over its
own with an 80% probability of occurrence for each individual parameter. In this
way the operators and other GA parameters that lead to more effective evolution of
individuals in subpopulations will be discovered and propagate, leading to more
effective evolution of the level-1 individuals overall. Note that, unlike the method of
Grefenstette [5], this evolution is occurring while the level-1 individuals are working
on the solution of the problem, and the experience they accumulate about the fitness
landscape is not discarded.

In our experiments, the second level was made up of 36 first-level subpopulations,
each of which contained 100 randomly initialized chromosomes representing

Investigations in Meta-GAs: Panaceas or Pipe Dreams? 5

candidate solutions. All experimental data reported here is averaged over 25 replicate
runs differing only in random number seed. P-values for comparisons between
experiments are calculated using an Independent Group t-test. Two level-1 fitness
functions (problems) were tested: counting ones (or one-max) and a repeating,
deceptive 4-bit trap. The fitness of a solution to the counting ones problem is simply
the number of ones on its binary chromosome, which had a length of 3,000 bits. The
fitness of a solution to the trap problem is the total of the fitnesses of each of its non-
overlapping 4 bit sections. A sample chromosome of length 1000 would have 250
traps: bits 0-3 would be the first trap, bits 4-7 the second, and so on to bits 996-999 as
the last trap. The fitness of each section is a function of how many of the 4 bits are
1’s, as shown in figure 2. The landscape of this trap problem has many local optima.
The chromosome length for the trap problem was 1,000 or 3,000. Fitnesses are
reported in tables as a percentage of the max possible fitness for that problem.

Fig. 2. Histogram showing the fitness function for the 4-bit trap problem. The highest fitness is
gained by setting all 4 bits to 1, but having any 3 bits set to 1 gives the lowest fitness, creating a
trap for a simple hill-climber

3 Experiments, Results and Discussion

Our first task was to demonstrate that the meta-GA was indeed finding different
parameter settings for the two different problems. We did 25 runs with the broad
parameter ranges described in methods that the meta-GA could search through. The
average parameter setting values after 100 generations are reported in Table 2. The
most notable difference between the two sets of parameters is that uniform crossover
is selected for when the fitness function is the counting ones problem whereas two-
point crossover dominates when it is the trap problem. This makes sense when
considering the two different problems. Uniform crossover is ideal for combining the
best alleles of different genomes but does not maintain groups of genes tightly linked
on the chromosome. This is a bad tactic in the trap problem, where groups of all zeros
in the right place should be maintained. One- and two-point crossover are less likely
to break up solutions to individual traps and thus are much better on this problem, at
least in the first hundred generations.

6 Jeff Clune1*, Sherri Goings2*, Erik D. Goodman3, William Punch2

 Table 2. The averages across 25 runs of the parameter settings that evolved on two different
problems. Tournament selection was locked in since doing so sped up experiments and it was
universally chosen in all the preliminary runs performed with the meta-GA. The rest of the
parameters are drawn from the system after 100 generations of evolution. Note that the meta-
GA overwhelmingly uses uniform crossover for the counting ones problem, which does not
have building blocks, whereas the trap problem, which does have building blocks, yields the
evolution of crossover types that keep sections of genomes together. The rest of the parameters
are not significantly different (p > .1)

Counting
Ones 4-bit Trap

Genomic Mutation Rate 2.15 1.54
1pt Crossover 1% 11%
2pt Crossover 1% 87%

Uniform Crossover 97% 1%
Crossover Rate 89% 86%

Tournament Size 24 22
Fitness 98% 82%

While the mutation rates appear different, they are not significantly so (p > .1). The
convergence across problems to similar values for crossover rates and for tournament
sizes is counter-intuitive. One can rule out mutation-selection balance as the
explanation for the similar crossover rates, given that the range is from 0 to 100%. We
looked into whether the mutational force is dominating selection in the tournament
sizes (which were in the middle of the 1-50 range) by testing a series of ranges: (e.g.
0-10, 0-15, 0-20, 0-25, … 0-45, data not shown). If mutation is the dominant force,
we would expect the resulting setting after a period of evolution to be in the middle of
its possible range. We found this to be the case in ranges with an upper limit above
approximately 15. In ranges with a lower ceiling, selection was strong and pushed the
tournament size up to nearly the ceiling. Selection thus prevents tournament size
ranges from persisting below 15 or so, but it appears that mutation-selection balance
is the reason the tournament size averages on the separate problems are so similar
within the wider 0-50 range. Looking at all the evolved parameter settings, we
conclude that some of the parameter settings have been adapted to the problem at
hand while others work for both problems.

We next addressed the issue of whether it would have been better to use either of
the parameter settings on both problems. In other words, does either of the specialist
parameter settings that we evolved do better than the meta-GA in general? To test this
we used the parameter settings found by the meta-GA in the 100th generation on each
problem as the immutable parameter settings for our specialist on that problem (for
the crossover type, we choose the obvious leader). We then did 25 runs on each
problem for each specialist parameter setting by locking those parameter values into
the meta-GA. This is done by restricting the search range of the meta-GA to the
desired outcome. The parameter settings for each specialist are shown in Table 3.

Investigations in Meta-GAs: Panaceas or Pipe Dreams? 7

Table 3. These parameter settings, chosen based on the data in Table 2, serve as the ‘specialist’
parameter configurations

Genomic
Mutation

Rate
Crossover

Type
Crossover

Rate
Selection

Type
Trnmnt

Size

Counting Ones
Specialist 2.2 Uniform 89% Trnmnt 24
4-bit Trap
Specialist 1.5 2pt 86% Trnmnt 22

We display the average fitness of the specialist parameter settings across 25 runs in
Figure 3.

0

20

40

60

80

100

120

Counting Ones
Problem

Trap Problem Average on
Both Problems

%
 o

f m
ax

 fi
tn

es
s

at
 1

00
 g

en
s

Counting Ones
Specialist

Trap Specialist

Meta-GA

Fig. 3. Fitnesses are averaged over 25 runs for each parameter configuration (counting ones
specialist, trap specialist and meta-GA) on two different problems (counting ones and trap).
The specialist parameter configurations are taken from Table 3. For both configurations a
‘specialist average’ is computed, which is the mean fitness of that specialist configuration
across both problems, and compared to the performance of the meta-GA. For each problem the
parameter configuration specialized to that problem performed significantly better than the
meta-GA (p<.001) which in turn performed significantly better than the parameter
configuration specialized to the other problem (p<.001). The average score, however, of the
meta-GA across both problems is much better than that of either specialist parameter
configuration (p < .001)

If the problem was solved before the hundredth generation, a fitness of 100% was
reported (this only happened with the counting ones specialist parameter
configuration on the counting ones problem, and the earliest a problem was solved
was in the 90th generation). These data fall perfectly in line with our expectations.
Each specialist does better than the meta-GA on the problem it is tuned to, for the
meta-GA has to pay the cost of learning a good parameter set and is at a disadvantage
up to that point. The meta-GA also remains at a disadvantage as long as there is no

8 Jeff Clune1*, Sherri Goings2*, Erik D. Goodman3, William Punch2

temporality in the problem, for it is exploring other parameter sets instead of
exploiting the one it has found. Note, though, that the difference between the
specialist and the meta-GA is not tremendous. Each specialist, however, performs
poorly relative to the meta-GA on a problem different from the one it is specialized
for. Of particular interest is the finding that the meta-GA does better averaged across
both problems than using either of the specialist parameter settings (p < .001). This
evidence supports the general conclusion that meta-GAs may be appropriate as
generalist problem solvers since they can function on different problems and achieve
performance close to parameter settings specifically tuned to that problem.

The next question we investigated is whether problems exist that require different
parameter settings at different phases in the run and, if so, whether the meta-GA
exploits this property. Intuitively, this makes sense. It is not hard to imagine that one
type of parameter setup is preferable at the beginning of a run, where a wide net
should be cast, and a different setup is desirable at the end of a run, where a local
search around a near-optimal solution should be performed. Evidence for this would
be two or more shifts in parameter settings within the course of a run that are repeated
across runs (that most runs move to a given parameter setup once is to be expected,
since they should move from the initially random settings to a good set, but if all runs
switch from this first setup to a second setup, this is evidence that what constitutes a
‘good’ setup has changed). We found this to be the case if we make the trap problem
harder by increasing the number of traps three-fold. We call this the ‘long trap’
problem because it involves increasing the chromosome length from 1000 to 3000.
The results show clear differences between parameter settings gleaned from earlier
and later stages in the runs (Table 4).

Table 4. The average parameters produced by the meta-GA at 200 generations (earlier in the
run) and 400 generations (later in the run) on the long trap problem. Note the dramatic switch
from 2pt crossover to uniform crossover. This change occurred in all 25 runs. The mutation
rates are also different (p < .001). That the configurations are so divergent indicates a
preference by the meta-GA for dissimilar parameter settings at different times during the run.
Numbers are rounded and therefore do not necessarily total to 100%

Early
Parameters

Late
Parameters

Genomic Mutation Rate 2.22 .96
1pt Crossover 7% 3%
2pt Crossover 85% 6%

Uniform Crossover 7% 90%
Crossover Rate 88% 89%

Tournament Size 25 23
Fitness 69% 76%

Investigations in Meta-GAs: Panaceas or Pipe Dreams? 9

In all 25 runs, the preferred crossover type shifts from two-point crossover to
uniform crossover. Figure 4 shows a representative run.

Fig. 4. The percent of 36 subpopulations employing a given crossover type over the course of
one run. The switch seen here from 2pt to uniform crossover happened in 100% of the 25 runs

The mutation rates are also significantly different (p < .001). It seems clear, then,
that the meta-GA prefers different parameter choices at various times during the run.
If this mid-course correction benefits performance, then the meta-GA should
outperform the parameter settings gleaned either before or after the change. To test
this theory we used the average genetic operator settings taken at 200 generations and
at 400 generations (Table 4), again choosing the obvious leader for crossover type,
and did a series of 25 runs on the long trap problem with each of those parameter
settings. We looked at the average fitness for each parameter set at generation 500,
which is just after all runs stopped improving and thus represents the maximum
fitness reached, and report the results in Figure 5.

This interesting result is counter to our expectations. Despite the fact that 25 out of
25 runs change their crossover type (amongst other things), performance would have
been better had they retained the parameter configuration they had before this switch.
While more investigation is called for to determine the reason for this phenomenon,
we suspect that this is an example of the shortsightedness of evolution. Converting to
uniform crossover must confer some short-term benefit, or it would not take off so
reliably, but that must confine the populations to a local optimum that is worse in the
long run than had they stayed with their originally dominant crossover type.

An alternate explanation is that it is the difference in other parameters that offsets
the gain of moving over to uniform crossover. For example, as we will see in the next
experiment, mutation rate settings higher than those the meta-GA chooses may lead to
increased performance. Note that the mutation rate in the ‘early parameter’ setup is
much higher than in the late parameter setup.

10 Jeff Clune1*, Sherri Goings2*, Erik D. Goodman3, William Punch2

These results complicate our assessment of the usefulness of meta-GAs. On the
one hand, there is evidence here for problem temporality and for the fact that the
meta-GA adapts to that temporality. On the other hand, this ability to adapt can also
lead the meta-GA to get stuck in local optima. It seems that this is a double-edged
sword, like most things in evolutionary computation (and searching in general) [7],
[17]. Adding a dimension increases both the potential for success and the potential
for getting stuck.

0

10

20

30

40

50

60

70

80

90

Counting Ones Problem

%
 o

f m
ax

 fi
tn

es
s

at
 5

00
 g

en
s

Early Parameter
Settings

Late Parameter
Settings

Meta-GA

Fig. 5. Fitness averages over 25 runs are reported for parameter settings at 200 generations
(early parameter settings) of the meta-GA on the trap problem and again at 400 generations
(late parameter settings). While the meta-GA beats the average of these two scores, it performs
worse than the early parameter settings.

That the meta-GA is choosing a strategy that is suboptimal raises the question of
whether it is truly finding good parameter settings. Is it often the case that meta-GAs,
like normal GEAs, get stuck on suboptimal peaks and cannot get off them? Our final
experiment tests this hypothesis further by comparing evolved mutation rates against
higher ones that scientists setting up GEAs often use. We took the parameters from
the 100th generation of the meta-GA running on the original trap problem
(chromosome 1000-long, Table 3) and doubled the mutation rate. The other
parameter settings were left unmodified. We then compared their performance on the
trap problem and report the findings in Table 5.

Table 5. Comparison of the average fitness for the parameters evolved by the meta-GA at 100
generations on the trap problem versus those same parameters with twice the mutation rate.
This test shows that injected knowledge commonplace in the GEA community, such as the
benefit of higher mutation rates, improves upon the effectiveness of the parameter
configurations evolved by the meta-GA. This casts doubt on the ability of the meta-GA to
discover good parameter configurations

 Mutation Rate Average Fitness
Evolved Parameters 1.5 81%

Higher Mutation Rate 3 94%

Investigations in Meta-GAs: Panaceas or Pipe Dreams? 11

Clearly the meta-GA has not found the optimal parameter settings. The slight
injection of the general knowledge that higher genomic mutation rates than 1.5 are
frequently good for GEA parameter settings improves the evolved parameter set. This
is an indication that meta-GAs, at least in the form used here, cannot be relied on to
discover optimal (or near optimal) parameter settings on their own.

4 Conclusions and Future Work

Our investigations support the claim that meta-GAs show some promise but have
significant shortfalls. On the plus side, we have shown that they can successfully
adapt themselves to two different problems. We have also shown that, while there are
costs involved in the meta-GA learning the parameters appropriate for a problem,
evidenced by the meta-GA performing slightly worse than specialist parameter
settings on the problem the specialist is tuned to, these costs are not substantial.
Furthermore, the costs can be seen as compensated for by the generality of the meta-
GA: In our experiments, the meta-GA performed better average on both problems
than either set of specialized parameters did on both problems. The meta-GA can thus
be considered a ‘Jack of all trades, but master of none.’ In situations in which the
human investment required to set up runs is more precious than performance, the
meta-GA could be preferred.

On the negative side, while arguments have been put forward that a strength of
meta-GAs is their ability to optimize parameter settings throughout the course of the
run, we found indications that doing so may not benefit long-term performance. We
also found that the meta-GA is not discovering great parameter configurations: a
slight change to one of the parameter settings resulted in a significant increase in
performance.

In future work, we will extend this research to a broader base of problems in the
hopes of discovering whether these lessons hold true in general. Additionally, we plan
to add more evolvable parameters into the mix and investigate different second-level
fitness functions. We are also interested in learning more about what causes the meta-
GA to be shortsighted and reliably converge upon suboptimal parameter
configurations. If we can learn how to keep natural selection, especially at the meta
level, focused on long-term goals without requiring human intervention, we will have
gone a long way toward delivering on the promise of GEAs to solve challenging
problems on their own.

References

1. Davis, L.: Adapting Operator Probabilities In Genetic Algorithms. In: Grefenstette, J. J.
(ed.): Proceedings of the Third International Conference on Genetic Algorithms. Morgan
Kaufman, New York (1989) 61-69

2. Davis, L.: Handbook of Genetic Algorithms. VanNostrand Reinhold, New York (1991)

12 Jeff Clune1*, Sherri Goings2*, Erik D. Goodman3, William Punch2

3. DeJong, K.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Doctoral
dissertation, University of Michigan (1975)

4. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control. In: Bäck, T., Fogel, D.B.,
Michalewicz, Z. (eds.): Evolutionary Computation 2: Advanced Algorithms and Operators,
Institute of Physics Publishing, Bristol (2000) 170-187

5. Grefenstette, J.J.: Optimization of Control Parameters for Genetic Algorithms. IEEE
Transactions of Systems, Man and Cybernetics. SMC 16(1) (1986) 122-128

6. Friesleben, B., Hartfelder, M.: Optimsation of Genetic Algorithms by Genetic Algorithms. In
Albrecht, R., Reeves, C., Steele, N. (eds): Artificial Neural networks and Genetic
Algorithms. Springer-Verlag (1993) 392-399

7. Hart, W. E., Belew, R. K.: Optimizing an Arbitrary Function is Hard for Genetic Algorithms.
In: Belew, R. K., Booker, L. B. (eds): Proceedings of the Fourth International Conference on
Genetic Algorithms. Morgan-Kaufman, Los Altos (1990) 190-195

8. Hinterding, R., Michalewicz, Z., Eiben, A.: Adaptation in Evolutionary Computation: A
Survey. In Back, T., Michalewicz, Z., Yao, X. (eds): Proceedings of the Fourth IEEE
International Conference on Evolutionary Computation. IEEE Press, Piscataway (1997) 65-
69

9. Kakuz, Y., Sakanashi, H., Suzuki, K.: Adaptive Search Strategy for Genetic Algorithms with
Additional Genetic Algorithms. In: Manner, R., Manderick, B. (eds): Proceedings of the
Second Conference on Parallel Problem Solving from Nature. Elsevier Science, Amsterdam
(1992) 311-320

10. Lis, J.: Parallel Genetic Algorithm with Dynamic Control Parameter. In: Proceedings of the
1996 IEEE Conference on Evolutionary Computation. IEEE Press, Piscataway (1996) 324-
329

11. Lis. J., Lis., M.: Self-adapting Parallel Genetic Algorithm with the Dynamic Mutation
Probability, Crossover Rate, and Population Size. In: Arabas, J. (ed): Proceedings of the 1st

Polish National Conference on Evolutionary Computation. Oficina Wydawnica Politechniki,
Warszawskiej (1996) 324-329

12. Schlierkamp-Voosen, D., Muhlenbein, H.: Strategy Adaptation by Competing
Subpopulations. In: Davidor, Y. (ed.): Proceeding of the Third Conference on Parallel
Problem Solving from Nature. Springer-Verlag (1994) 199-209

13. Smith, J. E., Fogarty, T. C.: Operator and Parameter Adaptation in Genetic Algorithms. Soft
Computing (1997) 1(2):81-87

14. Srinivas, M., Patnaik, L. M.: Adaptive Probabilities of Crossover and Mutation in Genetic
Algorithms. IEEE Transactions on Systems, Man and Cybernetics, 24-4. (1994)

15. Wang, G. Goodman, E. D., Punch, W. F.: On the Optimization of a Class of Blackbox
Optimization Algorithms. Proc. IEEE International Conference on Tools for Artificial
Intelligence. (1997)

16. Wang, G., Dexter, T., Punch, W., Goodman, E. D.: Optimization of a GA Within a GA for
a 2-Dimensional Layout Problem. Proceedings, First International Conference on
Evolutionary Computation and its Applications. Presidium, Russian Academy of Sciences.
(1996) 18-29

17. Wolpert, D. H., Macready, W. G.: No Free Lunch Theorems For Search. Technical Report.
Santa Fe Institute, Santa Fe (1995)

Acknowledgements: Our work was supported in part by an NSF grant (DEB-9981397) to
Richard Lenski, Charles Ofria, and colleagues. We would like to thank them and Robert T.
Pennock for providing a stimulating environment in which do to research. Further support came
from the College of Arts and Letters Dean’s Recruitment Fellowship and a Graduate Research
Award from the Quantitative Biology & Modeling Initiative at Michigan State University. We
also thank all the members of the digital evolution group at Michigan State University.

