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ABSTRACT 

HyperNEAT, a generative encoding for evolving artificial neural 
networks (ANNs), has the unique and powerful ability to exploit 
the geometry of a problem (e.g., symmetries) by encoding ANNs 
as a function of a problem's geometry. This paper provides the 
first extensive analysis of the sensitivity of HyperNEAT to 
different geometric representations of a problem. Understanding 
how geometric representations affect the quality of evolved 
solutions should improve future designs of such representations. 

HyperNEAT has been shown to produce coordinated gaits for a 
simulated quadruped robot with a specific two-dimensional 
geometric representation. Here, the same problem domain is 
tested, but with different geometric representations of the 
problem. Overall, experiments show that the quality and kind of 
solutions produced by HyperNEAT can be substantially affected 
by the geometric representation. HyperNEAT outperforms a direct 
encoding control even with randomized geometric 
representations, but performs even better when a human engineer 
designs a representation that reflects the actual geometry of the 
robot. Unfortunately, even choices in geometric layout that seem 

to be inconsequential a priori can significantly affect fitness. 
Additionally, a geometric representation can bias the type of 
solutions generated (e.g., make left-right symmetry more common 
than front-back symmetry). The results suggest that HyperNEAT 
practitioners can obtain good results even if they do not know 
how to geometrically represent a problem, and that further 
improvements are possible with a well-chosen geometric 
representation.   

Categories and Subject Descriptors 

I.2.6 [Artificial Intelligence]: Learning-Concept Learning, 
Connectionism and Neural Nets 

General Terms 

Experimentation, Algorithms 

Keywords 

HyperNEAT, NEAT, Neuroevolution, Representation, Geometry, 
Generative, Developmental, and Indirect Encodings, ANNs. 

1. INTRODUCTION AND BACKGROUND 
Many problems tackled by the field of artificial intelligence have 
geometric regularities that are intuitively obvious to a human 
observer. For example, in the game of checkers the geometric 
concept of adjacency is important because pieces close together 
are likely to constrain each other. The edge squares on the top and 
bottom of the board are different because they can confer 
kingship, and all of the edge squares are important because a piece 
on them cannot be jumped. There are also symmetries to the game 

(e.g., left-right, top-bottom, rotational). Many other AI problems, 
from machine vision to robotic control, also contain a plethora of 
geometric information. Although geometric information could be 
helpful in solving these types of problems, most evolutionary 
algorithms do not make such geometric information available to 
be exploited [14]. It is common to provide sensory information, 
such as whether a piece is present in a square, without also 
specifying the associated geometric coordinates. Stripping out 
such information is akin to asking a human to learn to play 
checkers by cutting up the board into its constituent pieces and 
scattering them randomly on the floor [4]. 

 A technique was recently introduced that provides geometric 
information to an evolutionary algorithm. It is a generative 
encoding called HyperNEAT that evolves ANNs [14]. 
HyperNEAT’s ability to exploit the geometry of a problem has 
been repeatedly demonstrated [1-4, 14]. HyperNEAT’s generative 
nature, wherein an element of a genome encodes for multiple 
elements in a phenotype, enables it to create phenotypic solutions 
that exhibit symmetries and repeated themes, with and without 
variation. These attributes are important when exploiting 
geometric information because geometric information is 
frequently symmetric and repetitive.   

 The ability to inject geometric information into an 
evolutionary algorithm necessitates that the experimenter choose 
how to represent that information. This requirement raises the 
question of how sensitive HyperNEAT is to different geometric 
representations of the same problem. There are aspects of some 
problems that have obvious geometrical representations (e.g., the 
Cartesian coordinate system of checkers), but other aspects of 
those problems may have no obvious geometric location. For 
example, where, geometrically, should the input for the current 
number of black pieces be placed? Other problems have many 
seemingly good geometric representations. For example, there are 
multiple ways to order the legs of a quadruped robot in two 

dimensions, and there are pluses and minuses for each alterative.   

 One possibility is that HyperNEAT is mostly immune to 
variation in the geometric representation. Such insensitivity would 
eliminate the need to spend time trying to select the most 
advantageous representation. It would also be surprising, 
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however, because preserving meaningful correlations in the 
problem’s representation should aid HyperNEAT’s performance. 
At the other extreme, it could be the case that HyperNEAT 
exhibits vastly different performance levels in response to even 
small changes in the geometric representation of aspects of the 
problem that seem to have no obvious geometric location in the 

representation (e.g., a piece counter). If the location of such 
information does matter, then HyperNEAT users should be aware 
of that fact so they know to try a variety of configurations.  

 This paper will investigate HyperNEAT’s sensitivity to 
geometric representations by performing repeated tests of the 
same problem (with the same inputs and outputs), but with 
different representations of the geometric information. The 
problem domain will be that of evolving a controller that produces 
a walking gait for a simulated quadruped robot [1]. This domain is 
appropriate for this study for two reasons. Initially, some aspects 
of the problem, such as the ordering of joints in each leg, have 
clear geometric relationships, yet other aspects of the problem do 

not. For example, each of the knee joints should be geometrically 
represented as further from the torso than the hip joints, but other 
inputs (described below) have no obvious geometric location. 
Secondly, it has been previously shown that HyperNEAT is 
successful on this task with one specific geometric representation 
[1], providing a baseline performance that can be compared to the 
performance of other geometric representations.   

2. PREVIOUS WORK 
The authors are aware of only one algorithm besides HyperNEAT 
that injects geometric information into an evolutionary algorithm. 
The simple geometry-oriented cellular encoding (SGOCE) is a 
generative encoding that evolves ANNs that control legged robots 
[8].  Controllers were successfully evolved with SGOCE that 
could walk, follow gradients, and avoid obstacles. Unfortunately, 
the benefit of the geometric information in the SGOCE system 
was not isolated and investigated. While the system as a whole 
performed well on the legged-robot problem, alternate geometric 
configurations were not tested. Additionally, the cellular-encoding 

method that SGOCE was based on had been previously shown to 
perform well on the problem of evolving controllers for legged 
robots without the addition of geometry [5].  

 HyperNEAT has been demonstrated to exploit geometric 
information on a variety of tasks. It was shown to discover 
numerous different geometric motifs that it repeated to solve a 
visual discrimination task [14].  Its ability to exploit geometry was 
also verified in the checkers domain, where it evaluated board 
configurations [4].  HyperNEAT also exploited the geometric 
representation of a team of agents to produce herding strategies 
[3]. For example, left-right symmetries were discovered wherein 
the left and right groups of agents would perform strategies that 

were mirror images of each other. HyperNEAT has also been 
demonstrated to exploit geometric information to produce 
symmetries on the problem domain of this paper, that of evolving 
gaits for simulated quadruped robots [1]. For example, 
HyperNEAT frequently produced gaits that were symmetric with 
respect to each leg, such that all four legs moved in synchrony 
(four-way symmetry).  

 Only one published experiment tested HyperNEAT’s 
sensitivity to alternate geometric representations of the same 
problem [14]. A simulated circular robot was rewarded for finding 
food. Eight food sensors and eight motor outputs were evenly 

distributed around the robot’s center. The robot could move in the 
direction of any of those food sensors by activating the 
corresponding motor output. Two geometric configurations were 
tested: a parallel Cartesian coordinate configuration, where 
corresponding food sensors and motor outputs were labeled with 
the same Y coordinates but different X coordinates, and a 

concentric configuration, with a polar coordinate system, where 
corresponding food and motor nodes shared the same angle from 
0°. Unless extra information about the distance between nodes 
was provided, the parallel configuration evolved strategies that 
collected food faster than the concentric configuration. Even 
though only one experiment was conducted, and it compared only 
two alternate geometric representations, the fact that the 

geometric representation made a difference is interesting and 
invites a more rigorous study of HyperNEAT’s sensitivity to 
geometric representations. Such a study is conducted in this paper. 

 With respect to the problem domain of this paper, researchers 
have previously evolved controllers for legged robots with 
generative encodings [5, 6, 10, 11, 15], including HyperNEAT 
[1]. The intent of this paper is not to produce better solutions to 
this problem, but instead to utilize it as a means of testing the 
sensitivity of HyperNEAT to geometric representations. That said, 
HyperNEAT did produce impressive robotic gaits that were fast, 
natural, and graceful [1]. While the field lacks the benchmarks 
necessary to compare gaits, HyperNEAT can be considered a 

cutting edge algorithm for evolving gaits for legged robots. 
Learning more about how HyperNEAT is helped or hurt by 
varying its geometric representation should assist those wishing to 
capitalize on HyperNEAT’s substantial potential in this domain.   

3. THE EXPERIMENTAL SYSTEM 

3.1 HyperNEAT 
HyperNEAT [14] is a generative encoding that evolves 

ANNs with the principles of the widely used NeuroEvolution of 
Augmenting Topologies (NEAT) algorithm [12]1. HyperNEAT 
evolves Compositional Pattern Producing Networks (CPPNs) 
[13], each of which is a function that takes inputs and produces 
outputs. If the goal is to evolve two-dimensional pictures, then the 
inputs to the CPPN function are the Cartesian coordinates of each 
of the pixels on the canvas. The output of the function determines 

the color of the pixel (Fig. 1).   
Evolution modifies the population of CPPN functions. Each 

CPPN is itself a directed graph network, where each node is a 
math function such as sine or Gaussian. The nature of the 
functions included can create a variety of desirable properties, 
such as symmetry (e.g., an absolute value or Gaussian function) 
and repetition (e.g., a sine or cosine function) that evolution can 
take advantage of. Nested coordinate frames can develop in the 
directed network. For instance, a sine function early in the 
network can create a repeating theme that, when passed into the 
symmetric Gaussian function, creates a repeating series of 
symmetric motifs (Fig. 1). This process is similar to how natural 

organisms develop. For example, many organisms set up a 
repeating coordinate frame (e.g., body segments) within which are 
symmetric coordinate frames (e.g., left-right body symmetry). 
Asymmetries can be generated by sourcing global coordinate 

                                                                    

1 HyperNEAT is freely available (http://eplex.cs.ucf.edu). This 
description of HyperNEAT is adapted from [2]. 
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frames such as f(x). The links between nodes in a CPPN have a 

weight value that can magnify or diminish the values that pass 
along them. Mutations that change these weights may, for 
example, give strong influence to a symmetry-generating part of a 
network while making the contribution from another part of the 
network more subtle. When CPPNs are evolved artificially with 
humans performing the selection, the evolved shapes look 

surprisingly beautiful, complex and natural [13, 18]. More 
importantly, the evolved shapes exhibit the desirable features of 
generative encodings, namely, the repetition of themes, 
symmetries, and hierarchies, with and without variation.  

In addition to images, CPPNs can generate ANNs [14]. In 
this case, the inputs are a constant bias value and the locations on 
a Cartesian grid of both the source (e.g., <x1=4, y1=4>) and target 
(e.g., <x2=5, y2=5>) nodes. The function takes these five values 
(bias, x1, y1, x2, y2) as inputs and produces two output values [4]. 
The first value determines the weight of the link between the 
associated input (source) and hidden layer (target) nodes. The 

second value determines the weight of the link between the 
associated hidden (source) and output (target) layer nodes. All 
pairwise combinations of source and target nodes are iteratively 
passed as inputs to a CPPN to determine what the weight value is 
for each possible link. Thus, the CPPN function is a genome that 
encodes for an ANN phenotype (also called a substrate) [14].  

A benefit of HyperNEAT is that it is capable of exploiting 
the geometry of a problem [14]. Because the link values between 
nodes in the final ANN substrate are a function of the geometric 
positions of those nodes, if those geometric positions represent 
aspects of the problem that are relevant to its solution, then 
HyperNEAT can exploit such information. For example, when 

playing checkers, the concept of adjacency (on the diagonals) is 
important. Link values between adjacent squares may need to be 
very different than link values between distant squares. 
HyperNEAT can exploit adjacency to create a connectivity motif 
and repeat it across the board [4, 14]. In the case of quadruped 
locomotion, HyperNEAT could, for example, implement front-
back, left-right, or diagonal symmetries to produce common gaits.  

Variation in HyperNEAT occurs when mutations change the 
CPPN function networks. Mutations can add a node to the graph, 
which results in the addition of a function to the CPPN network, 
or change its link weights. The functions in CPPNs in this paper 

are the standard set [14]: sine, sigmoid, linear, and Gaussian. The 
evolution of the population of CPPN networks occurs according 
to the principles of NEAT, which was originally designed to 

evolve ANNs. NEAT can be fruitfully applied to CPPNs because 
the population of CPPN networks is similar in structure to a 
population of ANNs.  

The NEAT algorithm is unique in three main ways [12]. 
Initially, it starts with small genomes that encode simple networks 
and slowly complexifies them via mutations that add nodes and 

links to the network. This complexification enables the algorithm 
to evolve the network topology in addition to its weights. 
Secondly, NEAT has a fitness sharing mechanism that preserves 
diversity in the system and gives time for new innovations to be 
tuned by evolution before competing them against rivals that have 
had more time to mature. Finally, NEAT tracks historical 
information to perform crossover in a way that is effective, yet 
avoids the need for expensive topological analysis. A full 
explanation of NEAT can be found in [12]. 

  

3.2 FT-NEAT, a direct encoding control 
An appropriate control for HyperNEAT is to evolve the 

weights for the same ANN substrate topology that HyperNEAT 
produces with a direct encoding that cannot exploit geometry. 
Fixed Topology NEAT (FT-NEAT) [1] is the same as 
HyperNEAT in all ways, except for the generative CPPNs. An 
instance of FT-NEAT that did not have hidden nodes, and was 
thus called Perceptron NEAT (P-NEAT), has previously served as 
a direct encoding control for HyperNEAT [2, 4, 14]. FT-NEAT is 

the same as NEAT without the complexification. The rest of the 
elements from NEAT (e.g., its crossover and diversity 
preservation mechanisms) remain the same between HyperNEAT 
and FT-NEAT, making FT-NEAT a good control.  

 

3.3 The problem domain, substrate topology, 

and default geometric representation 
In the experiments in this paper, HyperNEAT evolves 

controllers for a simulated quadruped. The default setup is the 
same from Clune et al. [1]. The ANN substrate consists of three 
two-dimensional, 5x4 Cartesian grids forming an input, hidden, 
and output layer (Fig. 2). There are no recurrent connections. 
Preliminary tests revealed that a hidden layer aided performance 
on this task, but recurrence did not. All possible connections 

between adjacent layers exist (although weights can be zero, 
functionally eliminating the link) meaning that there are 

! 

(5 " 4)
2
" 2 = 800  links in each substrate. As in previous studies 

[1, 2, 4, 14], to facilitate the elimination of links, any link weight 
with a value less than 0.2 or greater than -0.2 is set to 0. 
Otherwise, the value is normalized to a range of -3 to 3.  

The inputs to the substrate are the current angles of each of 
the 12 joints of the robot (described below), a touch sensor that 
provides a 1 if the lower leg is touching the ground and a 0 if it is 

not, the pitch, roll, and yaw of the torso, and a modified sine wave 
(which facilitated the production of periodic behaviors). The sine 
wave was the following function of time (t) in milliseconds: 

! 

sin(120 " t) "# . Multiplying by ! facilitates the production of 

numbers from –! to !, which is the range of the unconstrained 

joints. The constant 120 was experimentally found to produce 

fast, natural gaits during preliminary tests, which also determined 
that the touch, pitch, roll, yaw, and sine inputs all improved the 
ability to evolve fast gaits [1].   

The outputs of the ANN were the desired angle for each 

joint. This value was fed into a PID controller that simulated a 
servo. The controller subtracts the current joint angle from the 
desired joint angle. This difference was then multiplied by a 

 

Figure 1. CPPNs can compose math functions to generate the 

properties of symmetry and modular repetition, with and without 
variation. This figure is adapted from [13]. 
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constant (2.0), and a force of that magnitude was applied to the 

joint such that it would move toward the desired angle. Such PID-
based controllers have been shown to be effective [1, 7, 9, 16]. 

The parameter configurations for HyperNEAT and FT-
NEAT are from [1], and are similar to previous settings [2, 14]. 
They can be found at http://devolab.msu.edu/SupportDocs 
/HyperNEAT-SensitivityToGeometry. 50 trials were conducted 

for each treatment. Unless otherwise specified, trials within a 
treatment differed only in their random number generator seed, 
which influenced stochastic events, such as mutations. Each trial 
lasted 1,000 generations and had a population size of 150, which 
is common for HyperNEAT experiments [14].   

Robots were evaluated in the ODE physics simulator [17]. 
The rectangular torso of the robot is (in arbitrary ODE units) 0.15 
wide, 0.3 long, and .05 tall (Fig. 4). The shorter side of the robot 
in the forefront of Fig. 4 is designated the robot’s front. Each of 
four legs is composed of three cylinders (length 0.075, radius 
0.02) and three hinge joints. The first cylinder functions as a hip 
bone. It is parallel to the proximal-distal axis of the torso and 

barely sticks out from it. The second cylinder is the upper leg and 
the last cylinder is the lower leg. There are two hip joints and one 
knee joint. The first hip joint (HipFB) allows the legs to swing 
forward and backward (anterior-posterior) and is constrained to 
180° such that, at maximum extension, it is parallel with the torso. 
The second hip joint (HipIO) allows a leg to swing in and out 
(proximal-distal). Together, the two hip joints approximate a 
universal joint. The knee joint swings forward and backward. The 
HipIO and knee joints are unconstrained.   

Each controller was simulated for 6,000 time steps. Trials 
were cut short if any part of the robot except its lower leg touched 

the ground or if the number of direction changes in joints 
exceeded 960. The latter condition roughly reflects the physical 
fact that servo motors cannot be vibrated incessantly without 

breaking. The fitness of controllers was the following function of 
the maximum distance traveled in the X and Y dimensions: 

! 

2
(X

2
+Y

2
). The exponential nature of the function magnified the 

selective advantage of small increases in the distance traveled. 
 

4. RESULTS and DISCUSSION 

4.1 Engineered vs. Random Configurations 
A test of the importance of choosing an appropriate geometric 
representation is to compare a human-engineered representation 

(Fig. 2) [1] to randomized representations. Such random 
configurations represent configurations created without intuitions 
about how to represent the geometric information of a problem, 
and could be produced by a naïve engineer or algorithm. Each 
random configuration has the geometric locations of the inputs 
and outputs scrambled within their layer. For each trial, the 
geometric representation was randomized at the beginning of a 
trial and remained unchanged throughout the trial. For example, 
the sine input, which is located at X=5, Y=4 in the engineered 

treatment (Fig. 2), may be at (1,1) in one randomized treatment 

and (3,2) in another. An average was calculated across 50 trials, 

each of which had a different randomized configuration.  

 The human-engineered configuration significantly 
outperformed the average of the random configurations (Fig. 3, p 
< .05, this and all future p values were generated with a Mann-
Whitney U rank test). This performance difference shows that 
human intuitions about how to geometrically represent a problem 
help HyperNEAT. These results also underscore that the 
performance of HyperNEAT can be significantly affected by the 
geometric representation. It is also instructive to compare the 
randomized treatment to FT-NEAT. It has been previously shown 
that HyperNEAT (with the engineered configuration) outperforms 

FT-NEAT [1], so it is interesting to test whether a naïve geometric 
representation lowers the performance of HyperNEAT to the level 
of FT-NEAT. It turns out that HyperNEAT still performs better 
than FT-NEAT (Fig. 3), even with a randomized configuration 
(p<.001). This advantage could be due to HyperNEAT’s 
generative ability to reuse link values, or to its ability to exploit 
geometric correlations that arise by chance in randomized 
configurations. Regardless of the reason, it is noteworthy that 

 

Fig. 2.  The substrate configuration for HyperNEAT and FT-NEAT. 
The first four columns of each row of the input layer receive 

information about a single leg (the current angle of each of its three 
joints, and a 1 or 0 depending on whether the lower leg is touching 
the ground). The final column provides the pitch, roll, and yaw of the 

torso, as well as a sine wave. Evolution determines the roles of the 
hidden layer nodes. The nodes in the first three columns of each of 
the rows in the output layer specify the desired new joint angle. The 

joints will move toward that desired angle in the next time step, as 
described in the text. The outputs of the nodes in the rightmost two 
columns of the output layer are ignored.  

 

 

Fig. 3.  The HyperNEAT default configuration vs. an average of 
randomized configurations and vs. direct encoding controls. Here, as 
in all figures, thick lines show averages and thin lines show one 
standard error of the mean. 
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HyperNEAT outperforms FT-NEAT even with a naïve 
representation of the geometric information. Unsurprisingly, FT-
NEAT is not affected by a randomization of the geometry, which 
for FT-NEAT only changes the ordering of the values in its 
encoding (p >.05, Fig. 3). 

4.2 Representations in Different Dimensions 
To date, HyperNEAT has not been tested on the same problem 
with geometric representations in different dimensions. It is an 
open question as to whether the problem may be easier or harder 
for the CPPN to solve as the dimensionality of the problem 
representation more closely approximates the true geometry of the 
problem, which is three-dimensional in this case. To test this, 
HyperNEAT was evaluated separately with a one-dimensional (1-

d), two-dimensional (2-d), and three-dimensional (3-d) 
representation. The 1-d treatment has only X coordinates, the 2-d 

treatment has only X and Y coordinates, and the 3-d treatment has 

X, Y, and Z coordinates. The coordinate values and geometric 

layout for each of these three treatments are shown in Fig. 4 (1-d 
and 3-d) and Fig. 2 (2-d). The number of CPPN inputs for each 
dimension is twice the number of dimensions, plus one for a bias. 
There are thus 3, 5 and 7 inputs to the CPPN, respectively, for the 
1-d, 2-d, and 3-d treatments. 

Interestingly, the 1-d representation performed significantly 
better than the 2-d and 3-d representations in the initial 

generations (p < .05 for generations 1-58, Fig. 5), but the 2-d and 
3-d representations soon surpassed it (p < .05 for generations 170 
on). It is possible that the 1-d representation is simpler, but less 
powerful, making it easier to learn, but harder to achieve high 
performance with. More tests are needed to reveal whether this 

phenomenon is general to HyperNEAT on most problems, or is 
specific to this domain. It could be the case that the 1-d 
representation was hampered because it is not very accurate with 
respect to the actual geometry of the robot problem. For example, 
it is difficult to represent all of the symmetries and repetitions of 
the robot in 1-d.  

While the 2-d representation captures more of the geometric 
layout of the robot than the 1-d representation, it still lacks 

fidelity. On the robot, the two hip joints are in the same location 
and the knee is further away. However, the distance between these 
three joints is the same in the 2-d representation. Furthermore, the 
2-d representation inaccurately represents the torso as a square 
instead of a rectangle. Finally, the 2-d representation does not 
represent both the front-back and left-right symmetry of the robot. 
While these issues could be creatively rectified in 2-d, they 
disappear when providing the true dimensions of the robot in 3-d.  

Even in 3-d there remain some arbitrary choices when 
assigning geometric coordinates to inputs and outputs. Initially, 
even though the two hip joints occur in the same place on the 

actual robot, the CPPN would be unable to distinguish them if 
they had the exact same geometric coordinates. This problem was 
avoided by slightly separating these two joints in the 
representational geometry: The HipIO joint was placed just below 
the HipFB joint in the Z dimension. Additionally, the geometric 

coordinates must be determined for some information that has no 
meaningful geometric location. For example, where should the 
sine wave input go? This type of issue will always arise with 

HyperNEAT when dealing with information that does not belong 
to any geometric coordinate. The case of the pitch, roll, and yaw 
sensors is a bit clearer. It would be intuitive to place them in the 
torso, because that is what they provide feedback about, but it is 
not clear where in the torso they should be placed. For the 
purposes of this paper, placing the pitch, roll, and yaw sensors on 
the torso would have made a comparison with the 2-d 
configuration less clean, since in the 2-d setup the pitch, roll, yaw 
and sine (PRYS) inputs were placed just after the touch sensor on 
each leg.  For this reason, the PRYS inputs were kept at the distal 
end of each leg.  

 

Fig. 4. The 1-d and 3-d geometric representations. For ease of 
viewing, only the input layer node coordinates are depicted. The 
numbering system is the same for hidden and output layers. The 

numbers shown are those fed to the CPPN when the corresponding 
node is the source node (or target node, for hidden or output layers) to 
determine the link weight between a source and target node. In the 3-

d configuration, for three of the legs, only the roll, yaw, or sine node 
has its respective X, Y, and Z coordinates shown. The X and Y 

coordinates for the other nodes in each of those three legs will be the 
same as for the node shown for that leg, but the Z coordinate will 

change in the same manner as for the leg with all nodes shown.  

 

Fig. 5.  The performance of representations in different dimensions.  
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The data reveal that the 2-d and 3-d treatments performed 
similarly throughout the experiment, and ended up statistically 
indistinguishable (p > .05, Fig. 5). Evidently, moving to a more 
accurate representation did not improve performance, which is 
consistent with a previous finding [3]. However, it is also 
interesting that the 3-d representation did not hurt HyperNEAT’s 

performance. This result suggests that a user can select either a 2-
d or 3-d setup depending on which is easier to implement. It is 
premature to extrapolate from one test in one problem domain, 
however, so more tests are needed to test the generality of these 
findings.  

Comparing the engineered performance in each dimension 
against a randomized configuration from that dimension increases 
the sample size of the comparison between engineered and 
random configurations from 1 to 3 (although all three samples are 
from the same problem domain). The results, portrayed in Fig. 6, 
are relatively consistent across dimensions. In all cases, the 
engineered configuration outperformed the random configurations 

(p < .001) and the random configurations outperformed FT-NEAT 
(p< .001). Human intuitions provided a performance boost over 
the random treatments of 18.6%, 18.3%, and 11.7%, respectively, 
for the 1-d, 2-d, and 3-d representations. 

It is also noteworthy that the 2-d-randomized treatment 
statistically ties the 3-d-randomized treatment (p > .05), meaning 
that the CPPN does no better or worse in either treatment due to 
the specific set of values fed to the CPPN (shown in Fig. 2 and 
Fig. 4). However, the 1-d-randomized treatment is significantly 
worse (p < .01) compared to both the randomized 2-d and 
randomized 3-d treatments. This result implies that one potential 

explanation for why the 1-d treatment did worse than the 2-d and 
3-d treatments is because the CPPN has a harder time with the 
input numbers in the 1-d treatment (shown in Fig. 4), and not 
because the 1-d treatment is less geometrically accurate. The 1-d 
inputs could be harder to work with because of the specific 
numbers in that set, or because the numbers are close together, 
which could make it difficult to differentiate between them.  

The data in Fig. 6 reveal that HyperNEAT outperforms FT-
NEAT, even with a naïve, randomly chosen geometric 
configuration, regardless of the dimension of the representation. It 
is unknown to what extent the performance difference is due to 

HyperNEAT's generative capabilities or to its ability to exploit 
even randomized geometries. Unfortunately, these two forces are 
intertwined and difficult to experimentally isolate.  

4.3 Repeatedly Testing Random 

Representations 
In the previous experiments, the randomized treatments featured 
one trial for each of 50 randomized configurations. The average 
across these configurations was worse than the engineered 
configuration and better than FT-NEAT. However, in the 1-d 

treatment, one of the randomized configuration trials 
outperformed all of the 1-d engineered trials and another 
randomized trial performed worse than many of the FT-NEAT 
trials. The variance in the results highlights the need to explore 
whether these configurations are inherently better or worse, or 
whether it was simply a stochastic idiosyncrasy during the 
individual trials that caused their extreme performance. To test 
whether certain randomized configurations might perform better 
than the engineered configuration or worse than FT-NEAT, 50 
trials were conducted for the random configurations that 
performed best and worst, as well as for 25 other randomly chosen 
randomized configurations from the earlier experiment (Fig. 7).  

Averages across 50 trials for the configurations that 
originally performed the best and the worst were not as extreme as 
the original individual trial scores produced by them. The 
idiosyncrasies of those single trials mattered more than any 
property of the configuration itself. That said, there is a substantial 
amount of variation between the 27 configurations tested, once 
again underscoring the effect that the geometric representation can 
have in HyperNEAT. The difference can be significant (p < .001 
comparing the highest and lowest performing configurations). All 
of the variation in random configurations, however, was confined 
between the performance of FT-NEAT and HyperNEAT (p < 

.01). These data strongly recommend the selection of HyperNEAT 
over FT-NEAT on this problem. HyperNEAT’s advantage may be 
because this problem is highly regular, since all legs can be 
correlated [1], and HyperNEAT increasingly outperforms FT-
NEAT as problem-regularity increases [2]. It seems difficult, and 
may be impossible, to produce a geometric representation that 
performs worse than FT-NEAT. This result is surprising because 

 

Fig. 6.  Comparing the performances of an engineered configuration, 
random configurations and FT-NEAT in different dimensions.   

 

Fig. 7.  A comparison of HyperNEAT 1-d and FT-NEAT to 27 
randomized 1-d configurations. Each line is an average of 50 trials. 
Standard error bars are not shown for randomized configurations.    
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it suggests that HyperNEAT can exploit regularities in any 
geometric representation. As such, HyperNEAT could outperform 
its direct encoding alternatives even if a problem has no obvious 
geometry (provided the problem is regular [2]). It should be noted, 
however, that the direct encoding control was chosen because its 
ANN topology is identical to HyperNEAT. Additional studies 

(currently underway) will reveal whether other direct encodings, 
such as NEAT, better compete with HyperNEAT on this problem.  

No random representation outperformed an engineered 
representation (Fig. 7). This outcome reinforces the fact that 
human intuitions about the geometry of a problem help us choose 
a rare subset of the possible space of geometric configurations that 
are high performing. Clearly, if the number of samples were 
increased, then, eventually, representations would be found that 
are equal to, and possibly better than, the engineered approach. 
However, those configurations may represent a tiny region of the 
search space that is hard to algorithmically find. Human engineers 
can easily select high-performing representations because of our 

intuitive grasp of geometry. It would be interesting in future work 
to evolve the geometric locations of nodes and compare the results 
to human-designed configurations. 

4.4 Comparing Alternate Engineered 

Representations 
In addition to comparing one engineered configuration to random 
configurations, it is illuminating to compare different engineered 
representations. Such tests are worthwhile because when 
arranging a configuration, some choices are difficult (because 
there seem to be many good alternatives) and others are arbitrary 
(because multiple options are seemingly equivalent). Whether it is 
important to investigate alternatives in both cases is addressed by 
comparing alternate 2-d configurations. For example, the location 
of the PRYS information is an arbitrary decision because, unlike 

the joints in each leg, the PRYS information does not have any 
obvious geometric location. The engineered solution places the 
PRYS information in the final column of a 5x4 substrate (Fig. 2). 
However, it could also have been placed as an additional row in a 
4x5 substrate (hereafter referred to as the 'PRYS as row' setup).  

Ideally, such arbitrary configuration details should not affect 
the CPPN. If it is the case that arbitrary decisions have little 
impact on evolution, then the designer does not need to spend 
time testing alternate configurations to find a better one. 
Unfortunately, the data shows that such configurations can make a 
difference (Fig. 8). The 'PRYS as row' treatment does 9.7% worse 
than the default setup, which is statistically significant (p < .001). 

While it would be interesting to test additional configurations 
(e.g., PRYS as the first column, or as the first row), limited 
computational resources prevented such investigations.  

Other configuration decisions within a dimension may a 

priori be expected to have a larger impact. For example, the 
ordering of the legs may substantially affect the quality and type 
of gaits evolved. If CPPNs have an easier time grouping nodes 
that are closer to each other, then placing certain legs next to each 
other in the Y dimension in the 2-d setup may make it more likely 

for those legs to have similar neural controllers and hence have 
coordinated movements. Thus, some leg orderings may be more 
likely to produce left-right symmetry than front-back symmetry, 
for instance, which could affect fitness scores if one type of 
symmetry tends to produce faster gaits. 

Three alternate orderings were tested in addition to the 
default ordering (Fig. 8). Experiments with these configurations 
(Table 1) reveal that the default setup (FL-BL-BR-FR) is 
statistically indistinguishable from the FL-BR-FR-BL ordering (p 
> .05). However, the other two leg orderings (FL-FR-BR-BL and 
FL-FR-BL-BR) performed worse than the default (p < .01). These 
data suggest that evolution did worse when front-back symmetry 
was encouraged (by ordering the legs F*F*B*B*, where * is a 
wildcard). A more exhaustive test of different configurations is 

warranted, but was prevented by limited computational resources. 
Nevertheless, these results do conclusively show that the order in 
which the legs are numbered for the CPPN can make a difference.  

Another way of investigating the effect of different leg 
orderings is to classify the gaits produced by each representation. 
The gait of the best controller from all 50 trials in each of the four 
treatments was viewed and categorized (Table 1). In all of the 
treatments, the overwhelming majority of gaits moved all four 
legs in synchrony. However, the exceptions to this rule within 
each treatment are interesting because they reflect the geometric 
biases of each configuration. For example, all four cases of left-

right symmetry evolved in the configuration that ordered the legs 
*L*L*R*R. Furthermore, all seven cases of front-back symmetry 
were seen in the only two configurations that placed the legs in 
the order F*F*B*B*. It seems that it is much easier for the CPPN 
to bisect the Y dimension than to group legs 0 and 2 into one 

group and 1 and 3 into another. This 'every other' grouping 
requires a more complicated function, and did not evolve in any of 
the best controllers. Interestingly, the configuration chosen to 

encourage a trot gait, where diagonal legs are in sync (FL-BR-FR-
BL), evolved neither a diagonally-symmetric gait nor a gait with 
front-back or left-right symmetry. For some reason, possibly 
because the torso is inflexible, the trot gait was not employed by 
evolution. That, plus the difficulty of grouping the left-right legs 
or the front-back legs in this configuration, is probably the reason 
that no diagonal, left-right or front-back symmetries evolved.   

Further evidence of the influence of the geometric 
configuration on the resultant gait can be seen by examining those 
gaits in which three of the legs moved in synchrony, and one leg 
did something different. In 23 out of 25 (92%) of these gaits, the 

exception leg was the last leg in the ordering. It is not surprising 
that it is easier for the CPPN to make one distinction (e.g., all legs 

 

Fig. 8.  The performance of alternate 2-d engineered configurations.   
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less than N) instead of the two distinctions that are required to 
pick a leg out of the middle of a dimension. The two exceptions, 
however, prove that it is possible for the CPPN to make an 
exception for a middle leg. It is not clear why the CPPN tended to 
single out the last leg and not the first. 

It appears that the ordering of components geometrically can 
bias HyperNEAT’s grouping of those components. This result, 
which has not been previously reported, means that a user can 
inject biases (desired or not) into how HyperNEAT clusters 

subcomponents of a problem. For example, if evolving a team of 
multiple agents, which HyperNEAT has been shown to do well 
[3], the geometric ordering could influence the types of teams 
selected. If the ordering were speedster-speedster-tank-tank, for 
example, then the result may be more likely to involve a speedster 
squadron and a tank squadron. A speedster-tank-speedster-tank 
ordering, on the other hand, may be more likely to produce two 
heterogeneous speedster-tank teams. Importantly, the bias of any 
configuration is also determined by the CPPN function set, and 
changing it could alter the biases of any given representation.  

5. CONCLUSION 
This paper shows that when evolving controllers for simulated 
legged robots, HyperNEAT can be sensitive to the way its 
geometric information is represented. HyperNEAT outperformed 
a direct encoding control even with randomized geometric 
representations. HyperNEAT’s success with random 
configurations suggests it can perform well even if one does not 
know how to geometrically represent a problem. However, 
properly choosing a geometric configuration, which may seem 

intuitive to a human engineer, can provide a performance increase 
(10%-20% on this problem). Testing alternate engineered 
configurations was shown to be important for two reasons: 
Initially, some seemingly arbitrary decisions in the design of 
geometric representations can have large effects. Additionally, 
alternate options that a priori seem good for different reasons can 
have significantly different performance levels. In addition to 
quantitative fitness effects, the geometric configuration can also 
affect the types of solutions evolved, enabling engineers to bias 
the products of HyperNEAT evolution. HyperNEAT’s sensitivity 
to its geometric representation is both detrimental, because work 

is required to optimize it, and powerful, because altering it can 

yield performance increases and enable engineers to shape the 
solutions produced. It is important to note, however, that all of the 
conclusions in this paper are drawn from one problem domain. 
Future work is required to see whether such conclusions hold 
more generally.   
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Table 1: Resultant gait types for different leg orderings. Gaits 

were placed into the following categories. 4way Sym(metry): 

all legs in synchrony, L-R Sym: the left legs are in phase, and 

the right legs out of phase, F-B Sym: the front legs are in 

phase, and the back legs are out of phase, One Leg Out of 

Phase: three legs moved in synchrony and one was out of 

phase (resembles a gallop). If two legs were motionless, they 

were considered to be in synchrony. 2 gaits did not fit these 

categories, and are not tabulated. FL=Front Left, BL=Back 

Left, BR=Back Right and FR=Front Right. 

 
4way 
Sym 

L-R 
Sym 

F-B 
Sym 

One Leg Out Of Phase 

    FL BL BR FR 

FL-BL-BR-FR 
(default) 

36 4     9 

FL-BR-FR-BL 47    2  1 

FL-FR-BL-BR 44  3   1  

FL-FR-BR-BL 36  4  9  1 

  


