
The Sensitivity of HyperNEAT to Different Geometric
Representations of a Problem

Jeff Clune
Michigan State University

East Lansing, MI, USA

jclune@msu.edu

Charles Ofria
Michigan State University

East Lansing, MI, USA

ofria@msu.edu

Robert T. Pennock
Michigan State University

East Lansing, MI, USA

pennock5@msu.edu

ABSTRACT

HyperNEAT, a generative encoding for evolving artificial neural
networks (ANNs), has the unique and powerful ability to exploit
the geometry of a problem (e.g., symmetries) by encoding ANNs
as a function of a problem's geometry. This paper provides the
first extensive analysis of the sensitivity of HyperNEAT to
different geometric representations of a problem. Understanding
how geometric representations affect the quality of evolved
solutions should improve future designs of such representations.

HyperNEAT has been shown to produce coordinated gaits for a
simulated quadruped robot with a specific two-dimensional
geometric representation. Here, the same problem domain is
tested, but with different geometric representations of the
problem. Overall, experiments show that the quality and kind of
solutions produced by HyperNEAT can be substantially affected
by the geometric representation. HyperNEAT outperforms a direct
encoding control even with randomized geometric
representations, but performs even better when a human engineer
designs a representation that reflects the actual geometry of the
robot. Unfortunately, even choices in geometric layout that seem

to be inconsequential a priori can significantly affect fitness.
Additionally, a geometric representation can bias the type of
solutions generated (e.g., make left-right symmetry more common
than front-back symmetry). The results suggest that HyperNEAT
practitioners can obtain good results even if they do not know
how to geometrically represent a problem, and that further
improvements are possible with a well-chosen geometric
representation.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning-Concept Learning,
Connectionism and Neural Nets

General Terms

Experimentation, Algorithms

Keywords

HyperNEAT, NEAT, Neuroevolution, Representation, Geometry,
Generative, Developmental, and Indirect Encodings, ANNs.

1. INTRODUCTION AND BACKGROUND
Many problems tackled by the field of artificial intelligence have
geometric regularities that are intuitively obvious to a human
observer. For example, in the game of checkers the geometric
concept of adjacency is important because pieces close together
are likely to constrain each other. The edge squares on the top and
bottom of the board are different because they can confer
kingship, and all of the edge squares are important because a piece
on them cannot be jumped. There are also symmetries to the game

(e.g., left-right, top-bottom, rotational). Many other AI problems,
from machine vision to robotic control, also contain a plethora of
geometric information. Although geometric information could be
helpful in solving these types of problems, most evolutionary
algorithms do not make such geometric information available to
be exploited [14]. It is common to provide sensory information,
such as whether a piece is present in a square, without also
specifying the associated geometric coordinates. Stripping out
such information is akin to asking a human to learn to play
checkers by cutting up the board into its constituent pieces and
scattering them randomly on the floor [4].

 A technique was recently introduced that provides geometric
information to an evolutionary algorithm. It is a generative
encoding called HyperNEAT that evolves ANNs [14].
HyperNEAT’s ability to exploit the geometry of a problem has
been repeatedly demonstrated [1-4, 14]. HyperNEAT’s generative
nature, wherein an element of a genome encodes for multiple
elements in a phenotype, enables it to create phenotypic solutions
that exhibit symmetries and repeated themes, with and without
variation. These attributes are important when exploiting
geometric information because geometric information is
frequently symmetric and repetitive.

 The ability to inject geometric information into an
evolutionary algorithm necessitates that the experimenter choose
how to represent that information. This requirement raises the
question of how sensitive HyperNEAT is to different geometric
representations of the same problem. There are aspects of some
problems that have obvious geometrical representations (e.g., the
Cartesian coordinate system of checkers), but other aspects of
those problems may have no obvious geometric location. For
example, where, geometrically, should the input for the current
number of black pieces be placed? Other problems have many
seemingly good geometric representations. For example, there are
multiple ways to order the legs of a quadruped robot in two

dimensions, and there are pluses and minuses for each alterative.

 One possibility is that HyperNEAT is mostly immune to
variation in the geometric representation. Such insensitivity would
eliminate the need to spend time trying to select the most
advantageous representation. It would also be surprising,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GECCO’09, July 8–12, 2009, Montréal, Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07…$5.00.

 676

however, because preserving meaningful correlations in the
problem’s representation should aid HyperNEAT’s performance.
At the other extreme, it could be the case that HyperNEAT
exhibits vastly different performance levels in response to even
small changes in the geometric representation of aspects of the
problem that seem to have no obvious geometric location in the

representation (e.g., a piece counter). If the location of such
information does matter, then HyperNEAT users should be aware
of that fact so they know to try a variety of configurations.

 This paper will investigate HyperNEAT’s sensitivity to
geometric representations by performing repeated tests of the
same problem (with the same inputs and outputs), but with
different representations of the geometric information. The
problem domain will be that of evolving a controller that produces
a walking gait for a simulated quadruped robot [1]. This domain is
appropriate for this study for two reasons. Initially, some aspects
of the problem, such as the ordering of joints in each leg, have
clear geometric relationships, yet other aspects of the problem do

not. For example, each of the knee joints should be geometrically
represented as further from the torso than the hip joints, but other
inputs (described below) have no obvious geometric location.
Secondly, it has been previously shown that HyperNEAT is
successful on this task with one specific geometric representation
[1], providing a baseline performance that can be compared to the
performance of other geometric representations.

2. PREVIOUS WORK
The authors are aware of only one algorithm besides HyperNEAT
that injects geometric information into an evolutionary algorithm.
The simple geometry-oriented cellular encoding (SGOCE) is a
generative encoding that evolves ANNs that control legged robots
[8]. Controllers were successfully evolved with SGOCE that
could walk, follow gradients, and avoid obstacles. Unfortunately,
the benefit of the geometric information in the SGOCE system
was not isolated and investigated. While the system as a whole
performed well on the legged-robot problem, alternate geometric
configurations were not tested. Additionally, the cellular-encoding

method that SGOCE was based on had been previously shown to
perform well on the problem of evolving controllers for legged
robots without the addition of geometry [5].

 HyperNEAT has been demonstrated to exploit geometric
information on a variety of tasks. It was shown to discover
numerous different geometric motifs that it repeated to solve a
visual discrimination task [14]. Its ability to exploit geometry was
also verified in the checkers domain, where it evaluated board
configurations [4]. HyperNEAT also exploited the geometric
representation of a team of agents to produce herding strategies
[3]. For example, left-right symmetries were discovered wherein
the left and right groups of agents would perform strategies that

were mirror images of each other. HyperNEAT has also been
demonstrated to exploit geometric information to produce
symmetries on the problem domain of this paper, that of evolving
gaits for simulated quadruped robots [1]. For example,
HyperNEAT frequently produced gaits that were symmetric with
respect to each leg, such that all four legs moved in synchrony
(four-way symmetry).

 Only one published experiment tested HyperNEAT’s
sensitivity to alternate geometric representations of the same
problem [14]. A simulated circular robot was rewarded for finding
food. Eight food sensors and eight motor outputs were evenly

distributed around the robot’s center. The robot could move in the
direction of any of those food sensors by activating the
corresponding motor output. Two geometric configurations were
tested: a parallel Cartesian coordinate configuration, where
corresponding food sensors and motor outputs were labeled with
the same Y coordinates but different X coordinates, and a

concentric configuration, with a polar coordinate system, where
corresponding food and motor nodes shared the same angle from
0°. Unless extra information about the distance between nodes
was provided, the parallel configuration evolved strategies that
collected food faster than the concentric configuration. Even
though only one experiment was conducted, and it compared only
two alternate geometric representations, the fact that the

geometric representation made a difference is interesting and
invites a more rigorous study of HyperNEAT’s sensitivity to
geometric representations. Such a study is conducted in this paper.

 With respect to the problem domain of this paper, researchers
have previously evolved controllers for legged robots with
generative encodings [5, 6, 10, 11, 15], including HyperNEAT
[1]. The intent of this paper is not to produce better solutions to
this problem, but instead to utilize it as a means of testing the
sensitivity of HyperNEAT to geometric representations. That said,
HyperNEAT did produce impressive robotic gaits that were fast,
natural, and graceful [1]. While the field lacks the benchmarks
necessary to compare gaits, HyperNEAT can be considered a

cutting edge algorithm for evolving gaits for legged robots.
Learning more about how HyperNEAT is helped or hurt by
varying its geometric representation should assist those wishing to
capitalize on HyperNEAT’s substantial potential in this domain.

3. THE EXPERIMENTAL SYSTEM

3.1 HyperNEAT
HyperNEAT [14] is a generative encoding that evolves

ANNs with the principles of the widely used NeuroEvolution of
Augmenting Topologies (NEAT) algorithm [12]1. HyperNEAT
evolves Compositional Pattern Producing Networks (CPPNs)
[13], each of which is a function that takes inputs and produces
outputs. If the goal is to evolve two-dimensional pictures, then the
inputs to the CPPN function are the Cartesian coordinates of each
of the pixels on the canvas. The output of the function determines

the color of the pixel (Fig. 1).
Evolution modifies the population of CPPN functions. Each

CPPN is itself a directed graph network, where each node is a
math function such as sine or Gaussian. The nature of the
functions included can create a variety of desirable properties,
such as symmetry (e.g., an absolute value or Gaussian function)
and repetition (e.g., a sine or cosine function) that evolution can
take advantage of. Nested coordinate frames can develop in the
directed network. For instance, a sine function early in the
network can create a repeating theme that, when passed into the
symmetric Gaussian function, creates a repeating series of
symmetric motifs (Fig. 1). This process is similar to how natural

organisms develop. For example, many organisms set up a
repeating coordinate frame (e.g., body segments) within which are
symmetric coordinate frames (e.g., left-right body symmetry).
Asymmetries can be generated by sourcing global coordinate

1 HyperNEAT is freely available (http://eplex.cs.ucf.edu). This
description of HyperNEAT is adapted from [2].

 677

frames such as f(x). The links between nodes in a CPPN have a

weight value that can magnify or diminish the values that pass
along them. Mutations that change these weights may, for
example, give strong influence to a symmetry-generating part of a
network while making the contribution from another part of the
network more subtle. When CPPNs are evolved artificially with
humans performing the selection, the evolved shapes look

surprisingly beautiful, complex and natural [13, 18]. More
importantly, the evolved shapes exhibit the desirable features of
generative encodings, namely, the repetition of themes,
symmetries, and hierarchies, with and without variation.

In addition to images, CPPNs can generate ANNs [14]. In
this case, the inputs are a constant bias value and the locations on
a Cartesian grid of both the source (e.g., <x1=4, y1=4>) and target
(e.g., <x2=5, y2=5>) nodes. The function takes these five values
(bias, x1, y1, x2, y2) as inputs and produces two output values [4].
The first value determines the weight of the link between the
associated input (source) and hidden layer (target) nodes. The

second value determines the weight of the link between the
associated hidden (source) and output (target) layer nodes. All
pairwise combinations of source and target nodes are iteratively
passed as inputs to a CPPN to determine what the weight value is
for each possible link. Thus, the CPPN function is a genome that
encodes for an ANN phenotype (also called a substrate) [14].

A benefit of HyperNEAT is that it is capable of exploiting
the geometry of a problem [14]. Because the link values between
nodes in the final ANN substrate are a function of the geometric
positions of those nodes, if those geometric positions represent
aspects of the problem that are relevant to its solution, then
HyperNEAT can exploit such information. For example, when

playing checkers, the concept of adjacency (on the diagonals) is
important. Link values between adjacent squares may need to be
very different than link values between distant squares.
HyperNEAT can exploit adjacency to create a connectivity motif
and repeat it across the board [4, 14]. In the case of quadruped
locomotion, HyperNEAT could, for example, implement front-
back, left-right, or diagonal symmetries to produce common gaits.

Variation in HyperNEAT occurs when mutations change the
CPPN function networks. Mutations can add a node to the graph,
which results in the addition of a function to the CPPN network,
or change its link weights. The functions in CPPNs in this paper

are the standard set [14]: sine, sigmoid, linear, and Gaussian. The
evolution of the population of CPPN networks occurs according
to the principles of NEAT, which was originally designed to

evolve ANNs. NEAT can be fruitfully applied to CPPNs because
the population of CPPN networks is similar in structure to a
population of ANNs.

The NEAT algorithm is unique in three main ways [12].
Initially, it starts with small genomes that encode simple networks
and slowly complexifies them via mutations that add nodes and

links to the network. This complexification enables the algorithm
to evolve the network topology in addition to its weights.
Secondly, NEAT has a fitness sharing mechanism that preserves
diversity in the system and gives time for new innovations to be
tuned by evolution before competing them against rivals that have
had more time to mature. Finally, NEAT tracks historical
information to perform crossover in a way that is effective, yet
avoids the need for expensive topological analysis. A full
explanation of NEAT can be found in [12].

3.2 FT-NEAT, a direct encoding control
An appropriate control for HyperNEAT is to evolve the

weights for the same ANN substrate topology that HyperNEAT
produces with a direct encoding that cannot exploit geometry.
Fixed Topology NEAT (FT-NEAT) [1] is the same as
HyperNEAT in all ways, except for the generative CPPNs. An
instance of FT-NEAT that did not have hidden nodes, and was
thus called Perceptron NEAT (P-NEAT), has previously served as
a direct encoding control for HyperNEAT [2, 4, 14]. FT-NEAT is

the same as NEAT without the complexification. The rest of the
elements from NEAT (e.g., its crossover and diversity
preservation mechanisms) remain the same between HyperNEAT
and FT-NEAT, making FT-NEAT a good control.

3.3 The problem domain, substrate topology,

and default geometric representation
In the experiments in this paper, HyperNEAT evolves

controllers for a simulated quadruped. The default setup is the
same from Clune et al. [1]. The ANN substrate consists of three
two-dimensional, 5x4 Cartesian grids forming an input, hidden,
and output layer (Fig. 2). There are no recurrent connections.
Preliminary tests revealed that a hidden layer aided performance
on this task, but recurrence did not. All possible connections

between adjacent layers exist (although weights can be zero,
functionally eliminating the link) meaning that there are

!

(5 " 4)
2
" 2 = 800 links in each substrate. As in previous studies

[1, 2, 4, 14], to facilitate the elimination of links, any link weight
with a value less than 0.2 or greater than -0.2 is set to 0.
Otherwise, the value is normalized to a range of -3 to 3.

The inputs to the substrate are the current angles of each of
the 12 joints of the robot (described below), a touch sensor that
provides a 1 if the lower leg is touching the ground and a 0 if it is

not, the pitch, roll, and yaw of the torso, and a modified sine wave
(which facilitated the production of periodic behaviors). The sine
wave was the following function of time (t) in milliseconds:

!

sin(120 " t) "# . Multiplying by ! facilitates the production of

numbers from –! to !, which is the range of the unconstrained

joints. The constant 120 was experimentally found to produce

fast, natural gaits during preliminary tests, which also determined
that the touch, pitch, roll, yaw, and sine inputs all improved the
ability to evolve fast gaits [1].

The outputs of the ANN were the desired angle for each

joint. This value was fed into a PID controller that simulated a
servo. The controller subtracts the current joint angle from the
desired joint angle. This difference was then multiplied by a

Figure 1. CPPNs can compose math functions to generate the

properties of symmetry and modular repetition, with and without
variation. This figure is adapted from [13].

 678

constant (2.0), and a force of that magnitude was applied to the

joint such that it would move toward the desired angle. Such PID-
based controllers have been shown to be effective [1, 7, 9, 16].

The parameter configurations for HyperNEAT and FT-
NEAT are from [1], and are similar to previous settings [2, 14].
They can be found at http://devolab.msu.edu/SupportDocs
/HyperNEAT-SensitivityToGeometry. 50 trials were conducted

for each treatment. Unless otherwise specified, trials within a
treatment differed only in their random number generator seed,
which influenced stochastic events, such as mutations. Each trial
lasted 1,000 generations and had a population size of 150, which
is common for HyperNEAT experiments [14].

Robots were evaluated in the ODE physics simulator [17].
The rectangular torso of the robot is (in arbitrary ODE units) 0.15
wide, 0.3 long, and .05 tall (Fig. 4). The shorter side of the robot
in the forefront of Fig. 4 is designated the robot’s front. Each of
four legs is composed of three cylinders (length 0.075, radius
0.02) and three hinge joints. The first cylinder functions as a hip
bone. It is parallel to the proximal-distal axis of the torso and

barely sticks out from it. The second cylinder is the upper leg and
the last cylinder is the lower leg. There are two hip joints and one
knee joint. The first hip joint (HipFB) allows the legs to swing
forward and backward (anterior-posterior) and is constrained to
180° such that, at maximum extension, it is parallel with the torso.
The second hip joint (HipIO) allows a leg to swing in and out
(proximal-distal). Together, the two hip joints approximate a
universal joint. The knee joint swings forward and backward. The
HipIO and knee joints are unconstrained.

Each controller was simulated for 6,000 time steps. Trials
were cut short if any part of the robot except its lower leg touched

the ground or if the number of direction changes in joints
exceeded 960. The latter condition roughly reflects the physical
fact that servo motors cannot be vibrated incessantly without

breaking. The fitness of controllers was the following function of
the maximum distance traveled in the X and Y dimensions:

!

2
(X

2
+Y

2
). The exponential nature of the function magnified the

selective advantage of small increases in the distance traveled.

4. RESULTS and DISCUSSION

4.1 Engineered vs. Random Configurations
A test of the importance of choosing an appropriate geometric
representation is to compare a human-engineered representation

(Fig. 2) [1] to randomized representations. Such random
configurations represent configurations created without intuitions
about how to represent the geometric information of a problem,
and could be produced by a naïve engineer or algorithm. Each
random configuration has the geometric locations of the inputs
and outputs scrambled within their layer. For each trial, the
geometric representation was randomized at the beginning of a
trial and remained unchanged throughout the trial. For example,
the sine input, which is located at X=5, Y=4 in the engineered

treatment (Fig. 2), may be at (1,1) in one randomized treatment

and (3,2) in another. An average was calculated across 50 trials,

each of which had a different randomized configuration.

 The human-engineered configuration significantly
outperformed the average of the random configurations (Fig. 3, p
< .05, this and all future p values were generated with a Mann-
Whitney U rank test). This performance difference shows that
human intuitions about how to geometrically represent a problem
help HyperNEAT. These results also underscore that the
performance of HyperNEAT can be significantly affected by the
geometric representation. It is also instructive to compare the
randomized treatment to FT-NEAT. It has been previously shown
that HyperNEAT (with the engineered configuration) outperforms

FT-NEAT [1], so it is interesting to test whether a naïve geometric
representation lowers the performance of HyperNEAT to the level
of FT-NEAT. It turns out that HyperNEAT still performs better
than FT-NEAT (Fig. 3), even with a randomized configuration
(p<.001). This advantage could be due to HyperNEAT’s
generative ability to reuse link values, or to its ability to exploit
geometric correlations that arise by chance in randomized
configurations. Regardless of the reason, it is noteworthy that

Fig. 2. The substrate configuration for HyperNEAT and FT-NEAT.
The first four columns of each row of the input layer receive

information about a single leg (the current angle of each of its three
joints, and a 1 or 0 depending on whether the lower leg is touching
the ground). The final column provides the pitch, roll, and yaw of the

torso, as well as a sine wave. Evolution determines the roles of the
hidden layer nodes. The nodes in the first three columns of each of
the rows in the output layer specify the desired new joint angle. The

joints will move toward that desired angle in the next time step, as
described in the text. The outputs of the nodes in the rightmost two
columns of the output layer are ignored.

Fig. 3. The HyperNEAT default configuration vs. an average of
randomized configurations and vs. direct encoding controls. Here, as
in all figures, thick lines show averages and thin lines show one
standard error of the mean.

 679

HyperNEAT outperforms FT-NEAT even with a naïve
representation of the geometric information. Unsurprisingly, FT-
NEAT is not affected by a randomization of the geometry, which
for FT-NEAT only changes the ordering of the values in its
encoding (p >.05, Fig. 3).

4.2 Representations in Different Dimensions
To date, HyperNEAT has not been tested on the same problem
with geometric representations in different dimensions. It is an
open question as to whether the problem may be easier or harder
for the CPPN to solve as the dimensionality of the problem
representation more closely approximates the true geometry of the
problem, which is three-dimensional in this case. To test this,
HyperNEAT was evaluated separately with a one-dimensional (1-

d), two-dimensional (2-d), and three-dimensional (3-d)
representation. The 1-d treatment has only X coordinates, the 2-d

treatment has only X and Y coordinates, and the 3-d treatment has

X, Y, and Z coordinates. The coordinate values and geometric

layout for each of these three treatments are shown in Fig. 4 (1-d
and 3-d) and Fig. 2 (2-d). The number of CPPN inputs for each
dimension is twice the number of dimensions, plus one for a bias.
There are thus 3, 5 and 7 inputs to the CPPN, respectively, for the
1-d, 2-d, and 3-d treatments.

Interestingly, the 1-d representation performed significantly
better than the 2-d and 3-d representations in the initial

generations (p < .05 for generations 1-58, Fig. 5), but the 2-d and
3-d representations soon surpassed it (p < .05 for generations 170
on). It is possible that the 1-d representation is simpler, but less
powerful, making it easier to learn, but harder to achieve high
performance with. More tests are needed to reveal whether this

phenomenon is general to HyperNEAT on most problems, or is
specific to this domain. It could be the case that the 1-d
representation was hampered because it is not very accurate with
respect to the actual geometry of the robot problem. For example,
it is difficult to represent all of the symmetries and repetitions of
the robot in 1-d.

While the 2-d representation captures more of the geometric
layout of the robot than the 1-d representation, it still lacks

fidelity. On the robot, the two hip joints are in the same location
and the knee is further away. However, the distance between these
three joints is the same in the 2-d representation. Furthermore, the
2-d representation inaccurately represents the torso as a square
instead of a rectangle. Finally, the 2-d representation does not
represent both the front-back and left-right symmetry of the robot.
While these issues could be creatively rectified in 2-d, they
disappear when providing the true dimensions of the robot in 3-d.

Even in 3-d there remain some arbitrary choices when
assigning geometric coordinates to inputs and outputs. Initially,
even though the two hip joints occur in the same place on the

actual robot, the CPPN would be unable to distinguish them if
they had the exact same geometric coordinates. This problem was
avoided by slightly separating these two joints in the
representational geometry: The HipIO joint was placed just below
the HipFB joint in the Z dimension. Additionally, the geometric

coordinates must be determined for some information that has no
meaningful geometric location. For example, where should the
sine wave input go? This type of issue will always arise with

HyperNEAT when dealing with information that does not belong
to any geometric coordinate. The case of the pitch, roll, and yaw
sensors is a bit clearer. It would be intuitive to place them in the
torso, because that is what they provide feedback about, but it is
not clear where in the torso they should be placed. For the
purposes of this paper, placing the pitch, roll, and yaw sensors on
the torso would have made a comparison with the 2-d
configuration less clean, since in the 2-d setup the pitch, roll, yaw
and sine (PRYS) inputs were placed just after the touch sensor on
each leg. For this reason, the PRYS inputs were kept at the distal
end of each leg.

Fig. 4. The 1-d and 3-d geometric representations. For ease of
viewing, only the input layer node coordinates are depicted. The
numbering system is the same for hidden and output layers. The

numbers shown are those fed to the CPPN when the corresponding
node is the source node (or target node, for hidden or output layers) to
determine the link weight between a source and target node. In the 3-

d configuration, for three of the legs, only the roll, yaw, or sine node
has its respective X, Y, and Z coordinates shown. The X and Y

coordinates for the other nodes in each of those three legs will be the
same as for the node shown for that leg, but the Z coordinate will

change in the same manner as for the leg with all nodes shown.

Fig. 5. The performance of representations in different dimensions.

 680

The data reveal that the 2-d and 3-d treatments performed
similarly throughout the experiment, and ended up statistically
indistinguishable (p > .05, Fig. 5). Evidently, moving to a more
accurate representation did not improve performance, which is
consistent with a previous finding [3]. However, it is also
interesting that the 3-d representation did not hurt HyperNEAT’s

performance. This result suggests that a user can select either a 2-
d or 3-d setup depending on which is easier to implement. It is
premature to extrapolate from one test in one problem domain,
however, so more tests are needed to test the generality of these
findings.

Comparing the engineered performance in each dimension
against a randomized configuration from that dimension increases
the sample size of the comparison between engineered and
random configurations from 1 to 3 (although all three samples are
from the same problem domain). The results, portrayed in Fig. 6,
are relatively consistent across dimensions. In all cases, the
engineered configuration outperformed the random configurations

(p < .001) and the random configurations outperformed FT-NEAT
(p< .001). Human intuitions provided a performance boost over
the random treatments of 18.6%, 18.3%, and 11.7%, respectively,
for the 1-d, 2-d, and 3-d representations.

It is also noteworthy that the 2-d-randomized treatment
statistically ties the 3-d-randomized treatment (p > .05), meaning
that the CPPN does no better or worse in either treatment due to
the specific set of values fed to the CPPN (shown in Fig. 2 and
Fig. 4). However, the 1-d-randomized treatment is significantly
worse (p < .01) compared to both the randomized 2-d and
randomized 3-d treatments. This result implies that one potential

explanation for why the 1-d treatment did worse than the 2-d and
3-d treatments is because the CPPN has a harder time with the
input numbers in the 1-d treatment (shown in Fig. 4), and not
because the 1-d treatment is less geometrically accurate. The 1-d
inputs could be harder to work with because of the specific
numbers in that set, or because the numbers are close together,
which could make it difficult to differentiate between them.

The data in Fig. 6 reveal that HyperNEAT outperforms FT-
NEAT, even with a naïve, randomly chosen geometric
configuration, regardless of the dimension of the representation. It
is unknown to what extent the performance difference is due to

HyperNEAT's generative capabilities or to its ability to exploit
even randomized geometries. Unfortunately, these two forces are
intertwined and difficult to experimentally isolate.

4.3 Repeatedly Testing Random

Representations
In the previous experiments, the randomized treatments featured
one trial for each of 50 randomized configurations. The average
across these configurations was worse than the engineered
configuration and better than FT-NEAT. However, in the 1-d

treatment, one of the randomized configuration trials
outperformed all of the 1-d engineered trials and another
randomized trial performed worse than many of the FT-NEAT
trials. The variance in the results highlights the need to explore
whether these configurations are inherently better or worse, or
whether it was simply a stochastic idiosyncrasy during the
individual trials that caused their extreme performance. To test
whether certain randomized configurations might perform better
than the engineered configuration or worse than FT-NEAT, 50
trials were conducted for the random configurations that
performed best and worst, as well as for 25 other randomly chosen
randomized configurations from the earlier experiment (Fig. 7).

Averages across 50 trials for the configurations that
originally performed the best and the worst were not as extreme as
the original individual trial scores produced by them. The
idiosyncrasies of those single trials mattered more than any
property of the configuration itself. That said, there is a substantial
amount of variation between the 27 configurations tested, once
again underscoring the effect that the geometric representation can
have in HyperNEAT. The difference can be significant (p < .001
comparing the highest and lowest performing configurations). All
of the variation in random configurations, however, was confined
between the performance of FT-NEAT and HyperNEAT (p <

.01). These data strongly recommend the selection of HyperNEAT
over FT-NEAT on this problem. HyperNEAT’s advantage may be
because this problem is highly regular, since all legs can be
correlated [1], and HyperNEAT increasingly outperforms FT-
NEAT as problem-regularity increases [2]. It seems difficult, and
may be impossible, to produce a geometric representation that
performs worse than FT-NEAT. This result is surprising because

Fig. 6. Comparing the performances of an engineered configuration,
random configurations and FT-NEAT in different dimensions.

Fig. 7. A comparison of HyperNEAT 1-d and FT-NEAT to 27
randomized 1-d configurations. Each line is an average of 50 trials.
Standard error bars are not shown for randomized configurations.

 681

it suggests that HyperNEAT can exploit regularities in any
geometric representation. As such, HyperNEAT could outperform
its direct encoding alternatives even if a problem has no obvious
geometry (provided the problem is regular [2]). It should be noted,
however, that the direct encoding control was chosen because its
ANN topology is identical to HyperNEAT. Additional studies

(currently underway) will reveal whether other direct encodings,
such as NEAT, better compete with HyperNEAT on this problem.

No random representation outperformed an engineered
representation (Fig. 7). This outcome reinforces the fact that
human intuitions about the geometry of a problem help us choose
a rare subset of the possible space of geometric configurations that
are high performing. Clearly, if the number of samples were
increased, then, eventually, representations would be found that
are equal to, and possibly better than, the engineered approach.
However, those configurations may represent a tiny region of the
search space that is hard to algorithmically find. Human engineers
can easily select high-performing representations because of our

intuitive grasp of geometry. It would be interesting in future work
to evolve the geometric locations of nodes and compare the results
to human-designed configurations.

4.4 Comparing Alternate Engineered

Representations
In addition to comparing one engineered configuration to random
configurations, it is illuminating to compare different engineered
representations. Such tests are worthwhile because when
arranging a configuration, some choices are difficult (because
there seem to be many good alternatives) and others are arbitrary
(because multiple options are seemingly equivalent). Whether it is
important to investigate alternatives in both cases is addressed by
comparing alternate 2-d configurations. For example, the location
of the PRYS information is an arbitrary decision because, unlike

the joints in each leg, the PRYS information does not have any
obvious geometric location. The engineered solution places the
PRYS information in the final column of a 5x4 substrate (Fig. 2).
However, it could also have been placed as an additional row in a
4x5 substrate (hereafter referred to as the 'PRYS as row' setup).

Ideally, such arbitrary configuration details should not affect
the CPPN. If it is the case that arbitrary decisions have little
impact on evolution, then the designer does not need to spend
time testing alternate configurations to find a better one.
Unfortunately, the data shows that such configurations can make a
difference (Fig. 8). The 'PRYS as row' treatment does 9.7% worse
than the default setup, which is statistically significant (p < .001).

While it would be interesting to test additional configurations
(e.g., PRYS as the first column, or as the first row), limited
computational resources prevented such investigations.

Other configuration decisions within a dimension may a

priori be expected to have a larger impact. For example, the
ordering of the legs may substantially affect the quality and type
of gaits evolved. If CPPNs have an easier time grouping nodes
that are closer to each other, then placing certain legs next to each
other in the Y dimension in the 2-d setup may make it more likely

for those legs to have similar neural controllers and hence have
coordinated movements. Thus, some leg orderings may be more
likely to produce left-right symmetry than front-back symmetry,
for instance, which could affect fitness scores if one type of
symmetry tends to produce faster gaits.

Three alternate orderings were tested in addition to the
default ordering (Fig. 8). Experiments with these configurations
(Table 1) reveal that the default setup (FL-BL-BR-FR) is
statistically indistinguishable from the FL-BR-FR-BL ordering (p
> .05). However, the other two leg orderings (FL-FR-BR-BL and
FL-FR-BL-BR) performed worse than the default (p < .01). These
data suggest that evolution did worse when front-back symmetry
was encouraged (by ordering the legs F*F*B*B*, where * is a
wildcard). A more exhaustive test of different configurations is

warranted, but was prevented by limited computational resources.
Nevertheless, these results do conclusively show that the order in
which the legs are numbered for the CPPN can make a difference.

Another way of investigating the effect of different leg
orderings is to classify the gaits produced by each representation.
The gait of the best controller from all 50 trials in each of the four
treatments was viewed and categorized (Table 1). In all of the
treatments, the overwhelming majority of gaits moved all four
legs in synchrony. However, the exceptions to this rule within
each treatment are interesting because they reflect the geometric
biases of each configuration. For example, all four cases of left-

right symmetry evolved in the configuration that ordered the legs
*L*L*R*R. Furthermore, all seven cases of front-back symmetry
were seen in the only two configurations that placed the legs in
the order F*F*B*B*. It seems that it is much easier for the CPPN
to bisect the Y dimension than to group legs 0 and 2 into one

group and 1 and 3 into another. This 'every other' grouping
requires a more complicated function, and did not evolve in any of
the best controllers. Interestingly, the configuration chosen to

encourage a trot gait, where diagonal legs are in sync (FL-BR-FR-
BL), evolved neither a diagonally-symmetric gait nor a gait with
front-back or left-right symmetry. For some reason, possibly
because the torso is inflexible, the trot gait was not employed by
evolution. That, plus the difficulty of grouping the left-right legs
or the front-back legs in this configuration, is probably the reason
that no diagonal, left-right or front-back symmetries evolved.

Further evidence of the influence of the geometric
configuration on the resultant gait can be seen by examining those
gaits in which three of the legs moved in synchrony, and one leg
did something different. In 23 out of 25 (92%) of these gaits, the

exception leg was the last leg in the ordering. It is not surprising
that it is easier for the CPPN to make one distinction (e.g., all legs

Fig. 8. The performance of alternate 2-d engineered configurations.

 682

less than N) instead of the two distinctions that are required to
pick a leg out of the middle of a dimension. The two exceptions,
however, prove that it is possible for the CPPN to make an
exception for a middle leg. It is not clear why the CPPN tended to
single out the last leg and not the first.

It appears that the ordering of components geometrically can
bias HyperNEAT’s grouping of those components. This result,
which has not been previously reported, means that a user can
inject biases (desired or not) into how HyperNEAT clusters

subcomponents of a problem. For example, if evolving a team of
multiple agents, which HyperNEAT has been shown to do well
[3], the geometric ordering could influence the types of teams
selected. If the ordering were speedster-speedster-tank-tank, for
example, then the result may be more likely to involve a speedster
squadron and a tank squadron. A speedster-tank-speedster-tank
ordering, on the other hand, may be more likely to produce two
heterogeneous speedster-tank teams. Importantly, the bias of any
configuration is also determined by the CPPN function set, and
changing it could alter the biases of any given representation.

5. CONCLUSION
This paper shows that when evolving controllers for simulated
legged robots, HyperNEAT can be sensitive to the way its
geometric information is represented. HyperNEAT outperformed
a direct encoding control even with randomized geometric
representations. HyperNEAT’s success with random
configurations suggests it can perform well even if one does not
know how to geometrically represent a problem. However,
properly choosing a geometric configuration, which may seem

intuitive to a human engineer, can provide a performance increase
(10%-20% on this problem). Testing alternate engineered
configurations was shown to be important for two reasons:
Initially, some seemingly arbitrary decisions in the design of
geometric representations can have large effects. Additionally,
alternate options that a priori seem good for different reasons can
have significantly different performance levels. In addition to
quantitative fitness effects, the geometric configuration can also
affect the types of solutions evolved, enabling engineers to bias
the products of HyperNEAT evolution. HyperNEAT’s sensitivity
to its geometric representation is both detrimental, because work

is required to optimize it, and powerful, because altering it can

yield performance increases and enable engineers to shape the
solutions produced. It is important to note, however, that all of the
conclusions in this paper are drawn from one problem domain.
Future work is required to see whether such conclusions hold
more generally.

6. ACKNOWLEDGMENTS
Thanks to NSF grant # CCF-0643952, the Templeton Foundation, Ken
Stanley, Benjamin Beckmann, and the reviewers.

7. REFERENCES
[1] J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock, “Evolving

coordinated quadruped gaits with the HyperNEAT generative

encoding.” Proc. IEEE Congress on Evolutionary Computing Special
Section on Evolutionary Robotics, 2009. Trondheim, Norway.

[2] J. Clune, C. Ofria, and R. T. Pennock, “How a generative encoding
fares as problem-regularity decreases,” in PPSN (G. Rudolph, T.

Jansen, S. M. Lucas, C. Poloni, and N. Beume, eds.), vol. 5199 of
Lecture Notes in Computer Science, pp. 358–367, Springer, 2008.

[3] D. B. D’Ambrosio and K. O. Stanley, “Generative encoding for

multiagent learning,” in GECCO ’08: Proceedings of the 10th annual
conference on Genetic and evolutionary computation, (New York,
NY, USA), pp. 819–826, ACM, 2008.

[4] J. Gauci and K. O. Stanley, “A case study on the critical role of
geometric regularity in machine learning,” in AAAI (D. Fox and C.
P. Gomes, eds.), pp. 628–633, AAAI Press, 2008.

[5] F. Gruau, “Automatic definition of modular neural networks,”

Adaptive Behaviour, vol. 3, no. 2, pp. 151–183, 1995.
[6] G. S. Hornby, H. Lipson, and J. B. Pollack, “Generative

representations for the automated design of modular physical

robots,” IEEE Transactions on Robotics and Automation, vol. 19,
pp. 703–719, 2003.

[7] G. Hornby, S. Takamura, T. Tamamoto, and M. Fujita,

“Autonomous evolution of dynamic gaits with two quadruped
robots,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 402–410,
2005.

[8] J. Kodjabachian and J-A Meyer, “Evolution and Development of

Neural Controllers for Locomotion, Gradient-Followig, and
Obstacle-Avoidance in Artificial Insects.” IEEE Transactions on
Neural Networks. Vol 9:5, pp. 796-812. Sept. 1998.

[9] H. Liu and H. Iba, “A hierarchical approach for adaptive humanoid
robot control,” in Proceedings of the 2004 IEEE Congress on
Evolutionary Computation, (Portland, Oregon), pp. 1546–1553,

IEEE Press, 20-23 June 2004.
[10] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology,

Intelligence, and Technology of Self-Organizing Machines. Bradford
Book, 2004

[11] K. Sims, “Evolving 3d morphology and behavior by competition,”
Artif. Life, vol. 1, no. 4, pp. 353–372, 1994.

[12] K. O. Stanley and R. Miikkulainen, “Evolving neural networks

through augmenting topologies,” Evol. Comput., vol. 10(2), no. 2,
pp. 99–127, 2002.

[13] K. O. Stanley, “Compositional pattern producing networks: A novel

abstraction of development,” Genetic Programming and Evolvable
Machines, vol. 8, pp. 131 – 162, June 2007.

[14] K. O. Stanley , D. B. D’Ambrosio and J. Gauci, “A Hypercube-
Based Indirect Encoding for Evolving Large-Scale Neural

Networks.” Artificial Life. 15(2). 2009. To be published.
[15] V. K. Valsalam and R. Miikkulainen, “Modular neuroevolution for

multilegged locomotion,” in GECCO ’08: Proceedings of the 10th

annual conference on Genetic and evolutionary computation, (New
York, NY, USA), pp. 265–272, ACM, 2008.

[16] K. Wolff and P. Nordin, “An evolutionary based approach for

control programming of humanoids,” in Proceedings of the 3rd
International Conference on Humanoid Robots (Humanoids’03),
(Karlsruhe, Germany), IEEE, VDI/VDE-GMA, 1-2 October 2003.

[17] www.ode.org

[18] www.picbreeder.org

Table 1: Resultant gait types for different leg orderings. Gaits

were placed into the following categories. 4way Sym(metry):

all legs in synchrony, L-R Sym: the left legs are in phase, and

the right legs out of phase, F-B Sym: the front legs are in

phase, and the back legs are out of phase, One Leg Out of

Phase: three legs moved in synchrony and one was out of

phase (resembles a gallop). If two legs were motionless, they

were considered to be in synchrony. 2 gaits did not fit these

categories, and are not tabulated. FL=Front Left, BL=Back

Left, BR=Back Right and FR=Front Right.

4way
Sym

L-R
Sym

F-B
Sym

One Leg Out Of Phase

 FL BL BR FR

FL-BL-BR-FR
(default)

36 4 9

FL-BR-FR-BL 47 2 1

FL-FR-BL-BR 44 3 1

FL-FR-BR-BL 36 4 9 1

