
 

Abstract— Legged robots show promise for complex mobility 
tasks, such as navigating rough terrain, but the design of their 
control software is both challenging and laborious. Traditional 
evolutionary algorithms can produce these controllers, but 
require manual decomposition or other problem simplification 
because conventionally-used direct encodings have trouble 
taking advantage of a problem's regularities and symmetries. 
Such active intervention is time consuming, limits the range of 
potential solutions, and requires the user to possess a deep 
understanding of the problem's structure. This paper 
demonstrates that HyperNEAT, a new and promising 
generative encoding for evolving neural networks, can evolve 
quadruped gaits without an engineer manually decomposing 
the problem. Analyses suggest that HyperNEAT is successful 
because it employs a generative encoding that can more easily 
reuse phenotypic modules. It is also one of the first 
neuroevolutionary algorithms that exploits a problem's 
geometric symmetries, which may aid its performance. We 
compare HyperNEAT to FT-NEAT, a direct encoding control, 
and find that HyperNEAT is able to evolve impressive 
quadruped gaits and vastly outperforms FT-NEAT. 
Comparative analyses reveal that HyperNEAT individuals are 
more holistically affected by genetic operators, resulting in 
better leg coordination. Overall, the results suggest that 
HyperNEAT is a powerful algorithm for evolving control 
systems for complex, yet regular, devices, such as robots.       

I. INTRODUCTION

EGGED robots are likely to play an increasingly 
important role in our lives in generations to come. 

Legged consumer robots already exist, such as the biped 
ASIMO and the quadruped AIBO. Both the military and 
industry have a variety of legged robots under development. 
One benefit of legged robots over their wheeled counterparts 
is their mobility on rugged terrain, but a major drawback is 
the challenge of creating controllers for them. The problem 
is complicated because of the number of degrees of freedom 
in each leg and because of the body’s changing center of 
mass and momentum. Human engineers have had to design 
the majority of controllers for legged robots, which is a 
difficult and time-consuming process [1], [2]. Furthermore, 
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given how sensitive gait controllers are to slight changes in 
the configuration of a robot, a new gait must be created each 
time a robot is changed, which can lead to significant delays 
in the prototyping stage of robotic development [3].  

It is not surprising, therefore, that people have tried to 
automate the process of gait creation. Evolutionary 
computation, frequently involving the evolution of neural 
network controllers, has been successfully used to this end 
[3]–[10]. Evolved gaits are often better than those produced 
by human designers; one was even included on the 
commercial release of Sony’s AIBO robotic dog [3], [7]. 
However, many researchers have found that they cannot 
hand the entire problem over to evolutionary algorithms, 
because of the large number of parameters that need to be 
simultaneously tuned to achieve success [3], [7], [9]–[15]. 
Many of these scientists report that, while it is possible to 
evolve a controller to manage the inputs and outputs for a 
single leg, once evolution is challenged with the inputs and 
outputs of many legs, it fails to make progress.  

One solution that has worked repeatedly is to help the 
evolutionary algorithm ‘see’ that there are regularities and 
symmetries to the problem. This approach involves 
manually decomposing the problem by, for example, 
evolving the controller for one leg of a quadruped and then 
copying that controller to each leg, with some variation in 
phase. This tactic imposes modularity on the network and 
stipulates that a single encoding will be used for multiple 
modules. Many permutations of this strategy of manually 
decomposing the problem have produced functioning gaits 
[3], [7], [12]–[15]. Another type of manual decomposition, 
which is often used in addition to the previous one, is to 
simplify the high-level problem of locomotion by breaking it 
into manually-defined subproblems (e.g., producing leg 
oscillations, not falling over, moving certain legs in 
synchrony, etc.), and first rewarding the simple problems, 
then more advanced problems, on upwards until a high-level 
goal, such as rapid locomotion, can be rewarded directly 
[9]–[11]. Combinations of these two strategies for 
simplifying the problem are not unique to quadruped control, 
and have been used in other attempts to evolve controllers, 
such as for helicopters [16 and cites therein]. 

Unfortunately, both of these strategies have drawbacks. It 
would be better if we could completely automate the process 
and remove the need for human engineers to spend time 
decomposing the problem.  Furthermore, such manual 
decomposition potentially introduces constraints and biases 
that could preclude the attainment of better solutions [17]. 
Finally, if we can employ algorithms that can automatically 
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discover and exploit regularities in a problem, such 
algorithms will be able to do so for complex problems with 
respect to regularities of which humans might not be aware.  

 For these reasons, it is important to investigate 
algorithms that can automatically exploit regularities in 
problems. Generative encodings can facilitate this goal by 
allowing elements in a genome to be reused to produce 
many parts of a phenotype [19]. For example, the roughly 
25,000 genes in human DNA encode for the trillions of cells 
in a human.  This developmental system is in contrast to a 
direct encoding, where each phenotypic element is specified 
by a corresponding genotypic element. For example, if one 
were evolving a four-legged table using a direct encoding, it 
would take four mutations, one for each leg, to completely 
change the height of the table. In contrast, with a generative 
encoding where the length of all legs is specified only once, 
a single mutation at this site would bring about a coordinated 
change in the height of the table.  

Reuse in generative encodings can produce the desirable 
properties of symmetry, repetition of modules, and 
coordinated mutational effects. Previous work has shown 
that generative encodings produce more modular, complex 
phenotypes with higher fitnesses and more beneficial 
mutations on average than direct encoding controls [4].  It 
has further been shown that modular neural network 
controllers tend to evolve more effective gaits for legged 
robots [7]. If generative encodings produce more modular 
neural network controllers, can they outcompete direct 
encodings on this task? In this paper, we shed light on this 
question by testing whether a generative encoding will 
evolve quadruped gaits without requiring the manual 
decomposition of the problem. This paper improves our 
understanding of how to evolve quadruped gaits and also 
investigates how successful generative encodings are at 
exploiting problem-regularity, which they have been shown 
to do on simpler problems [18].  

While it has not been the norm, generative encodings have 
been used previously to evolve the gaits of legged creatures. 
In two well-known cases, a generative encoding was used to 
evolve the gaits and the morphologies of creatures [4], [6]. 
These dual evolutionary goals complicate analysis because 
the creatures may not be regular, and because it is unclear if 
any of the demonstrated fitness advantage of generative 
encodings (e.g., [4]) was due to the ability to evolve modular 
neural networks or due to the ability to build better 
morphologies. In one paper with similar goals as the current 
work, a generative encoding and direct encoding were 
compared for their ability to evolve a gait for a legged 
creature in an attempt to see whether the generative 
encoding could exploit the regularity of the problem without 
the problem being simplified or manually decomposed [5]. 
However, this project used a simple model of a six-legged 
insect that had only two degrees of freedom per leg. 
Nevertheless, the work showed that a generative encoding 
could automatically discover the regularity of the problem 
and decompose it by encoding a neural submodule once and 
using it repeatedly. The generative encoding also 

outperformed a direct encoding by solving the problem 
faster. Unfortunately, computational limits at the time meant 
that such results were anecdotal and not statistically 
significant because so few trials could be performed.  

To summarize, in this paper we demonstrate a generative 
encoding that enables the exploitation of regularity in the 
legged locomotion problem, making its solution feasible for 
an evolutionary algorithm without simplification via manual 
decomposition. In addition, the generative encoding we 
tested is new and shows real promise for a broad range of 
domains. As such, it is interesting in its own right to 
determine how it performs on the challenging legged 
locomotion problem.  

II. A DESCRIPTION OF THE GENERATIVE ENCODING AND ITS 
DIRECT ENCODING CONTROL1

The generative encoding utilized in this paper is called 
HyperNEAT [20] and is freely available 
(http://eplex.cs.ucf.edu). It was recently introduced as a 
generative encoding that evolves neural networks with the 
principles of the widely used NeuroEvolution of 
Augmenting Topologies (NEAT) algorithm [21]. 
HyperNEAT evolves Compositional Pattern Producing 
Networks (CPPNs), each of which is a function that takes an 
input and produces an output (Fig 1). If the goal is to evolve 
two-dimensional pictures, the inputs to the CPPN function 
are the Cartesian coordinates of each of the pixels on the 
canvas. The output of the function determines the color or 
shade of the pixel.   

Evolution can be used to modify a population of CPPN 
functions. Each CPPN is itself a directed graph where each 
node is a math function, such as sine or Gaussian. The nature 
of the functions used can create a wide variety of desirable 
properties, such as symmetry (e.g., an absolute value or 
Gaussian function) and repetition (e.g., a sine or cosine 
function) that evolution can take advantage of. Because a 
directed graph of functions is used, nested coordinate frames 
can develop. For instance, a sine function used early in the 
network can create a repeating theme that, when passed into 
the symmetrical Gaussian function, creates a repeating series 
of symmetrical motifs. This process is similar to how natural 
organisms develop. For example, many organisms set up a 
repeating coordinate frame (e.g., body segments) within 
which are symmetrical coordinate frames (e.g., left-right 
body symmetry). Asymmetries can be generated by sourcing 
global coordinate frames, such as f(x). The links between 
each node in a CPPN have a weight value that can magnify 
or diminish the values that pass along them. The ability to 
change these weights enables evolution to, for example, give 
strong weight to one part of the network generating 
symmetry while rendering the influence of another aspect of 
the network more subtle. When CPPNs are evolved 
artificially with humans doing the selection, the evolved 
shapes look surprisingly beautiful, complex, and natural 
[22]. More importantly, they exhibit the desirable features of 

1 This description is adapted from [18]. 
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generative encodings, namely, the repetition of themes, 
symmetries, and hierarchies, with and without variation.  

In addition to images, CPPNs can be used to generate 
neural networks [20]. In this case, the inputs are a constant 
bias value and the locations on a Cartesian grid of both a 
source node (e.g., <x1=4, y1=4>) and a target node (e.g., 
<x2=5, y2=5>). The function takes these five values (bias, x1,
y1, x2, y2) as input and produces two output values [23]. The 
first value determines the weight of the link between the 
associated input and hidden layer nodes. The second value 
determines the weight of the link between the associated 
hidden and output layer nodes. All pairwise combinations of 
source nodes and target nodes are iteratively passed as inputs 
to a given CPPN to determine what the weight value is for 
each possible link. Thus, the CPPN function is a genome 
that encodes for a neural network phenotype (also called a 
substrate) [20].  

An additional benefit of HyperNEAT is that it is 
purportedly the first neuroevolutionary algorithm capable of 
exploiting the geometry of a problem [20]. Because the link 
values between nodes are a function of the geometric 
positions of those nodes, if those geometric positions 
represent aspects of the problem that are relevant to its 
solution, HyperNEAT can exploit such information. For 
example, when playing checkers, the concept of adjacency 
(on the diagonals) is important. Link values between 
neighboring squares may need to be very different than link 
values between distant squares. HyperNEAT can use 
adjacency to create a connectivity motif and repeat it across 
the board [20], [23]. In the case of quadruped locomotion, 
HyperNEAT could, for example, implement front-back, left-
right, or diagonal symmetries to produce common gaits.  

Variation in HyperNEAT occurs when mutations change 
the CPPN function networks. Mutations can add a node to 
the graph, which results in the addition of a function to the 
CPPN network, or change its link weights. The functions 
used in CPPNs in this paper are sine, sigmoid, cosine, 
Gaussian, square, absolute root, linear, and one’s 
complement. The evolution of the population of CPPN 
networks occurs according to the principles of NEAT, which 

was originally designed to evolve neural networks. NEAT 
can be fruitfully applied to CPPNs because the population of 
CPPN networks is similar in structure to a population of 
neural networks.  

The NEAT algorithm is unique in three main ways [21]. 
Initially, it starts with small genomes that encode simple 
networks and slowly complexifies them via mutations that 
add nodes and links to the network. This complexification 
enables the algorithm to evolve the network topology in 
addition to its weights. Secondly, it uses a fitness-sharing 
mechanism that preserves diversity in the system and allows 
new innovations time to be tuned by evolution before 
forcing them to compete against rivals that have had more 
time to mature. Finally, it uses historical information to 
perform crossover in a way that is effective, yet avoids the 
need for expensive topological analysis. A full explanation 
of NEAT can be found in [21].  

Conveniently, a direct encoding version of NEAT exists 
that can serve as a control. Fixed-Topology NEAT (FT-
NEAT, also called Perceptron NEAT or P-NEAT when it 
does not have hidden nodes), has been previously used to 
compare the generative encoding of HyperNEAT with a 
direct encoding that is similar to HyperNEAT in all ways, 
except its use of generative CPPNs [20]. FT-NEAT directly 
evolves neural network phenotypes. It is the same as NEAT 
without the complexification. In other words, FT-NEAT 
uses evolution to tune the weights of a neural network with a 
fixed topology. Since in HyperNEAT the complexification is 
performed on the CPPN, but the resultant neural network 
topology remains fixed, the topology of the FT-NEAT 
neural network substrate is also fixed. The end product of 
HyperNEAT and FT-NEAT are thus neural network 
substrates with the same topology, whose weights are 
determined in different ways. The rest of the elements from 
NEAT (e.g., fitness sharing) remain the same in both 
HyperNEAT and FT-NEAT, making the latter a good 
control.  

III. THE EXPERIMENTAL SYSTEM AND SETUP

Following previous work, a neural network substrate 
configuration is used that separates the inputs and outputs 
onto separate planes [18], [20], [23]. The specific 
configuration here features three two-dimensional, 5x4 
Cartesian grids forming an input, hidden and output layer 
(Fig. 2). There are no recurrent connections. All possible 
connections between adjacent layers exist (although weights 
can be zero, functionally eliminating the link), meaning that 
there are (5x4)2*2 = 800 links in the substrate of each 
organism. Following [20] and [23], to facilitate the 
elimination of links, any link weight with a specified value 
less than 0.2 or greater than -0.2 is set to 0. Otherwise, the 
value is normalized to a range of -3 to 3.  

The inputs to the substrate are the current angles of each 
of the 12 joints of the robot (described below), a touch 
sensor that provides a 1 if the lower leg is touching the 
ground and a 0 if it is not, the pitch, roll and yaw of the 

Fig. 1. CPPNs can compose math functions to generate the 
properties of symmetry and modular repetition, with and without 
variation. This figure is adapted from [22]. 
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torso, and a modified sine wave (which facilitated the 
production of periodic behaviors). The sine wave function is 
sin(120) ×π . Multiplying by π facilitates the production of 
numbers that go from –π to π which is the range of the 
unconstrained joints. The constant 120 was chosen because 
it was experimentally found to produce fast, yet natural, 
gaits. While changing this constant can affect the types of 
gaits produced, doing so was never observed to alter any of 
the qualitative conclusions of this paper. Preliminary tests 
determined that the touch, pitch, roll, yaw, and sine inputs 
all improved the ability to evolve fit gaits (data not shown). 

The outputs of the neural network were the desired joint 
angle for each joint. This was fed into a PID controller that 
simulated a servo. The controller subtracts the current joint 
angle from the desired joint angle. This difference was then 
multiplied by a constant force (2.0), and a force of that 
magnitude was applied to the joint such that the joint would 
move toward the desired angle. Such PID-based control 
systems have been shown to be effective [3], [10], [11]. 

The parameter configurations used for HyperNEAT and 
FT-NEAT are similar to those previously used [18], [20], 
and can be found at http://devolab.msu.edu/SupportDocs/ 
EvolvingCoordinatedGaitsWithHyperNEAT. The 
experimental results reported here were found to be robust to 
moderate changes in the parameter settings, and to changes 
in the number and types of inputs. 50 trials were conducted 
for each encoding. Trials within a treatment differed only in 
their random number generator seed, which influenced 
stochastic events such as mutations. Each trial featured a 
population of 150 organisms, which is common for 
HyperNEAT experiments [20], and lasted 1,000 generations 
(~24-48 hours on 2.33 GHz Intel Xeon Linux machines).   

Robots were evaluated in the widely used ODE physics 
simulator [www.ode.org]. The quadrupeds in this paper look 
like tables (Fig. 4), which is fitting because seminal work 
comparing generative encodings to direct encodings was 
performed on the evolution of static tables [24]. The 
rectangular torso of the organism is (in arbitrary ODE units) 
0.15 wide, 0.3 long, and .05 tall. For a point of reference, the 
rightmost, shorter side of the robot from the viewer’s initial 
perspective is designated as the robot’s front. Each of four 
legs is comprised of three cylinders (length 0.075, radius 
0.02) and three hinge joints. The first cylinder functions as a 
hip bone. It is parallel to the proximal-distal axis of the torso 
and barely sticks out from it. The second cylinder is the 
upper leg and the last cylinder is the lower leg. There are 
two hip joints and one knee joint. The first hip joint (HipFB) 
allows the legs to swing forward and backward (anterior-
posterior) and is constrained to 180° such that at maximum 
extension it is parallel with the torso. The second hip joint 
(HipIO) allows a leg to swing in and out (proximal-distal). 
Together, the two hip joints approximate a universal joint. 
The knee joint swings forward and backward. The HipIO 
and knee joints are unconstrained.   

Each organism was simulated for 6,000 time steps. Trials 
were cut short if any part of the robot save its lower leg 
touched the ground or if the number of direction changes in 
joints exceeded 960. The latter condition was an attempt to 
roughly reflect the physical fact that servo motors cannot be 
vibrated incessantly without breaking. The fitness of a 
controller was the following function of the maximum 
distance traveled in the X and Y dimensions: 2(X 2 +Y 2 ). An 
exponential function was used so that even small increases 
in the distance traveled would result in a sizable selective 
advantage.   

IV. RESULTS

The first question is whether HyperNEAT and FT-NEAT 
are able to make any reasonable progress given that they are 
facing the entire problem without simplification. Of further 
interest is the difference in performance, if any, between the 
two encodings. As Fig. 3 reports, while both encodings are 
able to improve over time, HyperNEAT vastly outperforms 
FT-NEAT in every generation (p<.0001 comparing the 
fitness of the best organism from each encoding for each 
generation. This and all future p values come from a non-
parametric Wilcoxon rank sum test). While progress is still 
being made at the end of the run, it is seems unlikely that 
FT-NEAT would catch up and surpass HyperNEAT. 
Unfortunately, computational limitations prevented us from 
running these experiments longer. Even if FT-NEAT were 
able to close the gap with HyperNEAT, it is still worthwhile 
to note how much of an advantage HyperNEAT has in early 
generations.    

The difference in fitness in the first generation, which is 
comprised of randomly generated organisms, is interesting. 
HyperNEAT begins with an advantage over FT-NEAT 
because even randomly generated CPPNs are sometimes 

Fig. 2.  The substrate configuration for both HyperNEAT and FT-
NEAT treatments. The first four columns of each row of the input 
layer receive information about a single leg (the current angle of each 
of its three joints, and a 1 or 0 depending on whether the lower leg is 
touching the ground). The final column provides the pitch, roll and 
yaw of the torso as well as a sine wave. Evolution determines how to 
use the hidden layer nodes. The nodes in the first three columns of 
each of the rows in the output layer specify the desired new joint 
angle. The joints will move toward that desired angle in the next time 
step as described in the text. The outputs of the nodes in the rightmost 
two columns of the output layer are ignored.  
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able to produce the coordination of legs that facilitates 
movement. It was observed that some of the randomly 
generated organisms in HyperNEAT displayed impressive 
amounts of coordination and immediately appeared to be on 
the road towards rudimentary locomotion. Randomly 
generated FT-NEAT organisms did not reach the same level 
of success.  

We employ three methods of delving deeper into how 
HyperNEAT is able to outperform FT-NEAT. The first is to 
watch the gaits produced by the different encodings and 
make subjective judgments about what is going on. Videos 
of the evolved gaits are available at http://devolab.msu.edu/ 
SupportDocs/EvolvingCoordinatedGaitsWithHyperNEAT. 
This procedure reveals that HyperNEAT quadrupeds tend to 
have a significant amount of coordination among all of their 
legs. Some organisms move all four legs in synchrony, 
which produces a coordinated, natural, repeated bounding 
across the landscape (Fig 4, top). This implies that 
HyperNEAT is discovering the four-legged regularity of the 
problem and is using the same neural module for each leg. 
Another gait that commonly evolved had three legs 
bounding nearly in synchrony and the fourth (a front leg) in 

opposite phase, resembling a horse gallop. This gait 
demonstrates that HyperNEAT is not constrained to simply 
repeat one theme for every leg. It makes an exception to the 
rule for the out-of-phase leg. Moreover, the movement of the 
out-of-phase leg resembles that of the other three, implying 
that HyperNEAT is simply using a variation on the theme 
used in the other legs. The ability to reuse modules with 
variation in different contexts is a desirable property in 
encodings [19]. A third gait was particularly interesting. It 
featured the back two legs bounding, as in the previous two 
gaits, but involved a running motion of the front two legs, 
with the front-left leg in opposite phase as the front-right 
(analogous to a human hopping forward with their hands 
placed on a jogger’s shoulders). In general, the gaits 
produced by HyperNEAT looked smooth, effective, natural, 
and successful. Moreover, it appeared that most of these 
robots could continue running off into the distance because 
they had evolved a gait that perpetually repeated a basic 
movement (e.g., bounding).    

In contrast, the gaits produced by FT-NEAT were mostly 
uncoordinated, erratic, and often consisted of a patchwork 
assembly of tripping, cartwheeling, and stumbling until the 
robot finally fell. Frequently, each leg acted independently 
(Fig 4, bottom). That is not to say that there was never any 
coordination among legs. It was not uncommon for two or 
even three legs to be synchronized, but usually the actions of 
another leg would eventually hamper the efforts being made 
by the coordinated legs. These results demonstrate that it 
was not impossible for FT-NEAT to coordinate its legs, but 
suggests that the direct encoding made it much harder to 
evolve coordinated behaviors. It was rare to see any basic 
move perpetually repeated. Most FT-NEAT trials ended 
with the robot falling over, as opposed to HyperNEAT trials, 
which were usually terminated only because time expired. A 
test of the reliability of each encoding is to watch the least fit 
gait of the 50 trial champions for each encoding: the worst 
HyperNEAT gait is coordinated and effective, whereas the 
worst FT-NEAT gait is discombobulated. Watching the 
videos of FT-NEAT organisms, one concludes that FT-
NEAT is not really solving the legged locomotion problem 

Fig. 3. The performance of HyperNEAT and FT-NEAT on the legged 
locomotion problem. Plotted for each treatment is the mean across 50 
trials of the greatest distance away from the starting place arrived at 
by the best organism in that generation. Thin lines above and below 
the mean represent one standard error of the mean.     

HyperNEAT 

FT-NEAT  
       

Fig. 4. Comparing gaits produced by HyperNEAT and FT-NEAT. Both organisms move from left to right. The first row shows the HyperNEAT robot 
with the median fitness. It was typical for HyperNEAT robots to have all of their legs coordinated, whether all legs were in phase (as with this robot) or 
with one leg in anti-phase. This series of moves would be repeated over and over in a stable, natural gait. The second row shows the FT-NEAT robot 
with the median fitness. It displays far less coordination among its legs, is less stable and does not end up in the same position as it started.   

2768 2009 IEEE Congress on Evolutionary Computation (CEC 2009)



to an acceptable level. In contrast, HyperNEAT seems to 
solve the legged locomotion problem in all trials with a 
small variety of different solutions.    

A second method for investigating how HyperNEAT was 
able to outperform FT-NEAT is to look at the angles of the 
leg joints during locomotion. This technique is a different 
way of estimating the coordination, or lack thereof, of the 
different legs under each encoding. Corroborating the 
subjective opinions formed by watching videos, the plots of 
each leg’s HipFB joint from four typical runs shows that the 
legs in HyperNEAT organisms were far more coordinated 
than those in FT-NEAT organisms (Fig 5). While only the 
HipFB joint is shown, plots of the other two joints are 
consistent with these results.   

A third way of learning how HyperNEAT was able to 
outperform FT-NEAT is to look at the effects that mutation 
and crossover had on organisms in the different encodings. It 
has been shown that, when simultaneously evolving the 
morphologies and controllers of creatures, mutations to a 
generative encoding were, on average, much less damaging 
than with a direct encoding. Moreover, the generative 
encoding produced far more beneficial mutations than the 
direct encoding control [4]. A similar study of the effects of 
genetic perturbations in this experiment tells a more 
complicated story. Organisms that were produced solely via 
mutation are analyzed separately from those produced solely 
via crossover. While the majority of organisms were both 
mutated and crossed over, focusing on the cases where only 

one genetic operator was involved clarifies the analyses. In 
the entire experiment, over three million organisms were 
produced via mutation only and nearly two million were 
produced via crossover only, in nearly equal parts per 
encoding, providing a substantial sample size.     

Overall, the magnitude of the effect of mutations is much 
higher using HyperNEAT than using FT-NEAT (Fig 6). This 
difference likely reflects the fact that mutations to the CPPN 
encoding can bring about holistic changes to the entire 
neural network substrate in HyperNEAT, and thus have 
larger effects. Such holistic effects are more advantageous 
on highly regular problems, such as this one. Incredibly, 
HyperNEAT is consistently able to generate mutant 
offspring that are dozens of orders of magnitude more fit 
than their parents. HyperNEAT’s ability on this front dwarfs 
that of FT-NEAT. Of course, many of these large mutational 
effects could be the result of a high-fitness organism 
suffering a mutation that makes it immobile one generation 
and then a compensatory mutation that approximately 
restores its original fitness in the next generation. 
Nevertheless, the fitness trajectories of the two encodings 
(Fig 2.) suggest that such a large variance in offspring fitness 
seems to greatly enhance evolutionary adaptation.  

To quantify the differences, a mutation effect score of 
log2(child_fitness/parent_fitness) was used. A zero means 
the offspring fitness is identical to the parent fitness. 
Negative scores signify an offspring that was less fit than its 
parent and positive scores reflect the opposite. Interestingly, 

Fig. 5. Comparing HipFB joint angles observed in robots evolved using HyperNEAT (top row) and FT-NEAT (bottom row). The possible range for this 
joint was -0.5π to .5π, with the y-axis reporting radians from the initial down (0) position. For clarity, only the first 2,000 of 6,000 time steps are 
depicted. Top left: This was the most common gait produced by HyperNEAT and involved the organism bounding with all four legs moving in unison. 
It is depicted in Fig 4. Top right: This gait, which resembles the four-beat ‘gallop’ gait, has three legs in near synchrony and one of the front legs out of 
phase. Bottom: Two typical FT-NEAT runs. Note that some legs are synchronized but that other legs prevent the coordinated repetition of a pattern.  

HyperNEAT 

FT-NEAT 
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the median mutation effect score is the same for both 
encodings, at approximately 0. The mean mutation effect 
score for HyperNEAT was -1.17, which was lower than the -
0.61 for FT-NEAT. While the average mutation for 
HyperNEAT was thus more deleterious, evolution was 
capable of exploiting the steady production of extremely 
beneficial mutations to end up with higher overall fitness 
values. The distributions of mutations in these experiments 
were similar to those that arose when evolving static tables 
with generative and direct encodings [24]. That the 
distribution of mutations alone contributed to the success of 
HyperNEAT over FT-NEAT is supported by the fact that in 
an alternate experiment where only mutations generated 
offspring, HyperNEAT still vastly outperformed FT-NEAT, 
and a plot of mutational effect scores looked similar to Fig 6 
(data not shown).  The magnitude of mutational effects in 
Fig. 6 does change with time in both treatments because 
those mutant offspring that barely move from the starting 
place will count as a smaller fraction of the more fit parents 
of later generations. Unsurprisingly, the two distributions are 
significantly different statistically (p<.0001).  

An analysis of crossover reveals further differences 
between the encodings (Fig. 7). The number of offspring that 
were better than both parents is statistically the same 
between the two encodings (final generation p>.41). 
However, HyperNEAT produces far more offspring with a 
fitness value between those of their parents than FT-NEAT 
(final generation p <.0001). The reason for this difference is 
not intuitively obvious. One might have expected the 
opposite, given that crossover in FT-NEAT could have 
combined successful leg controllers for different legs, 
whereas crossover in HyperNEAT is presumably more likely 
to disrupt a controller design that affects the controllers for 
multiple legs. This topic remains an open area for future 
research.     

V. DISCUSSION AND FUTURE WORK

Both objective and subjective analyses found that 
HyperNEAT is much better at evolving legged locomotion 

controllers than FT-NEAT. The success of HyperNEAT 
should be expected for two reasons. Initially, as a generative 
encoding, HyperNEAT can reuse neural modules and thus 
more easily coordinate the behaviors of a robot’s legs. 
Mutations to reused modules are also more likely to 
holistically change the gait controller, allowing evolution to 
spend more time testing coordinated gaits. These types of 
mutational effects are similar to what was found when 
evolving static tables, where mutations produced 
coordinated effects that frequently led to substantial fitness 
increases [24]. Here, however, the reused modules are not 
the body components themselves, but the neural networks 
driving such components. It will be interesting in future 
investigations to directly and quantitatively assess the 
modularity of neural network substrates produced by 
HyperNEAT in comparison to those produced by FT-NEAT. 
The findings in this paper, which reveal substantial 
coordination among the legs in HyperNEAT robots, coupled 
with previous demonstrations that modular neural networks 
are better at controlling legged creatures [7], suggests that 
HyperNEAT networks are far more modular. The results of 
this paper serve as another demonstration that generative 
encodings can outperform direct encodings on regular 
problems [4], [5], [18], [20]. 

A second reason for HyperNEAT’s success may be its 
unique ability to exploit geometric aspects of the problem, 
such as symmetry [20], [23]. During this research many 
symmetries were observed in HyperNEAT gaits, including 
four-way symmetry (all legs in unison), left-right symmetry, 
front-back symmetry, and even combinations of these 
symmetries (e.g., the left and right legs operating in 
perfectly opposite phase while the back two legs acted in a 
completely different, but synchronized way). However, such 
symmetries might simply be more likely to arise when 
genetic modules are reused and could have cropped up using 
any generative encoding. In fact, such symmetries have been 
observed before when evolving moving creatures with 
generative encodings [4]–[6], raising the question of how 

Fig. 6. The effect of mutations in HyperNEAT and FT-NEAT on 
organisms that were only mutated (i.e. were descendant from only 
one parent).

Fig. 7. The effect of crossover in HyperNEAT and FT-NEAT on 
organisms that resulted from crossover but not mutation. Although 
standard error bars are not shown for clarity, each plotted group is 
significantly different from every other (last generation p<.0001), 
except that the fraction of offspring better than both parents for each 
encoding was statistically indistinguishable (last generation p>.41).  
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much, if at all, HyperNEAT’s ability to exploit geometry 
aids it in these experiments. In reality, the setup in this paper 
is not especially conducive to the exploitation of geometry. 
For example, the joints are represented by approximated 
two-dimensional coordinates (Fig. 2), when they truly exist 
in a three-dimensional space. Furthermore, the two-
dimensional layout does not accurately reflect all the 
geometric information it could. The HipFB and HipIO 
joints, for example, are extremely close together on the 
actual robot. In the coordinate system fed into the CPPN, 
however, the HipIO joint is listed as being as far away from 
the HipFB joint as the knee is from the HipIO joint. These 
deficiencies were intentional. This investigation focuses 
more on HyperNEAT’s ability as a generative encoding on 
the locomotion task, instead of HyperNEAT’s ability to 
exploit geometric information. For this reason, a somewhat 
geometrically naïve, ‘out of the box’ version of HyperNEAT 
was used. Separate investigations are already underway to 
explicitly test the extent to which HyperNEAT’s ability to 
exploit geometries fuels its success, and what the effect of 
alternate geometric configurations of the nodes might be.  

While HyperNEAT’s many features make it difficult to 
isolate the contributions of each one, they also make it a 
promising encoding to investigate. HyperNEAT has yet to 
be tested on a wide range of problems. To date, however, it 
has performed quite well on tasks as diverse as visual 
recognition [20], controlling simple multi-agent systems 
[25], and evaluating checkers boards [23]. Additionally, the 
CPPNs underlying HyperNEAT produce complex, elegant, 
natural-looking images with symmetry and repetition [22]. 
All of these accomplishments suggested that HyperNEAT 
would excel at evolving controllers for legged robots. The 
results in this paper confirm that ability. HyperNEAT’s 
success at evolving gaits for legged controllers is all the 
more impressive because it was able do so without the 
problem being manually decomposed or simplified. The 
encoding could handle the complexities of the entire 
problem because it discovered how to exploit the regularities 
of the problem. It was also observed in preliminary tests (not 
shown) that HyperNEAT could produce coordinated gaits 
with different types of input, and with more complicated 
morphologies (e.g., a six-legged, segmented robot). Based 
on the success reported here, which comes despite naïve 
geometric inputs and without a large amount of tuning, it is 
not unreasonable to predict that HyperNEAT, and variations 
of it, will contribute significantly to the science of 
automating the creation of controllers for complex, yet 
regular, devices, such as legged robots.  
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