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Abstract. In the natural world, individual organisms can adapt as their 
environment changes. In most in silico evolution, however, individual 
organisms tend to consist of rigid solutions, with all adaptation occurring at the 
population level. If we are to use artificial evolving systems as a tool in 
understanding biology or in engineering robust and intelligent systems, 
however, they should be able to generate solutions with fitness-enhancing 
phenotypic plasticity. Here we use Avida, an established digital evolution 
system, to investigate the selective pressures that produce phenotypic plasticity. 
We witness two different types of fitness-enhancing plasticity evolve: static-
execution-flow plasticity, in which the same sequence of actions produces 
different results depending on the environment, and dynamic-execution-flow 
plasticity, where organisms choose their actions based on their environment. We 
demonstrate that the type of plasticity that evolves depends on the 
environmental challenge the population faces. Finally, we compare our results 
to similar ones found in vastly different systems, which suggest that this 
phenomenon is a general feature of evolution.  

1   Introduction 

The field of evolutionary computation uses natural selection to automatically find 
solutions to engineering problems [1, 2]. Frequently, these solutions are on par or 
better than any human-produced solution [2]. However, most of these cases have 
involved static solutions to static challenges [3]. If the challenge suddenly changed 
even slightly, most organisms would not be able to adapt without further evolution. In 
other words, these organisms exhibit little or no within-life, or ‘intralife’, adaptation. 
Frequently, however, natural organisms or engineered solutions need to be robust 
enough to handle noisy and dynamic environments. One way of doing this is to 
evolve organisms in environments where the challenges they are presented with vary 
over time. Certainly, if our long-term goal is to evolve truly intelligent systems, we 
need to better understand how evolution can produce things that can intelligently 
adapt, initially in simple and then in increasingly sophisticated ways, to changing and 
novel situations. 



2   Previous Work 

One tactic researchers have used to evolve individuals that exhibit within-lifetime 
adaptation is to provide natural selection with a hand-written learning module, such as 
back propagation for neural networks. The researchers then investigate how evolution 
takes advantage of this ability to learn [4-8] and whether the results of learning are 
transferred to the genome via the Baldwin effect [9, 10]. Such research forces natural 
selection to use human-designed learning mechanisms, however, as opposed to 
discovering its own. A different approach—and the one taken here—is to use very 
simple systems to investigate how the ability to adapt could evolve on its own.  

One clear sign that an organism is capable of adapting is if it behaves differently in 
two different environments. This kind of adaptive capacity is called phenotypic 
plasticity. Investigating this characteristic, Nolfi et al. evolved neural network brains 
for virtual robots in alternating light and dark environments [11]. The environments 
were constructed such that bodies, brains and behavior tuned to one environment 
would perform poorly in the other. They tested the evolved solutions by placing the 
same genome in the two different environments and observed whether they behaved 
differently. They found that in populations that evolved in alternately light and dark 
environments, the individuals were tuned to whichever environment they were placed 
in. Stanley et al. also used evolving neural networks to look at the evolution of 
phenotypic plasticity [3]. They compared experiments where the connection weights 
of neural networks never changed during the course of their life to those where 
evolution could create and modify connection weights during a lifetime. Such changes 
could be used to modify behavior in response to information sensed from the 
environment. The individuals were evolved in environments where each type of food 
randomly switched between nutritious and poisonous. Contrary to their expectations, 
they found that the individuals in the fixed-connection weight treatment discovered a 
simple solution that worked in all environments. The individuals executed the same 
code, but the inputs into that code were different because of the environmental 
differences, resulting in a different in behavior that was adapted to each environment. 
They thus possessed phenotypic plasticity in spite of a static execution flow. On the 
other hand, in the modifiable connection weight treatment the individuals developed 
phenotypic plasticity using a dynamic execution flow. In both cases the phenotypic 
plasticity enabled them to behave differently in the different environments. Ironically, 
the ‘simple trick’ evolution discovered in the fixed-connection weight experiment was 
more effective than the dynamic execution flow based strategy it discovered in 
modifiable connection weight treatments.  

In short, we identify two types of phenotypic plasticity: static-execution-flow 
plasticity and dynamic-execution-flow plasticity. Which type prevails under natural 
selection depends on many evolutionary factors, such as the environmental challenge 
and or the genomic representation.   Much of the research into evolving phenotypic 
plasticity in silico has been done with neural networks controlling simulated robots. 
But how general are the results? Can similar patterns be found in different systems? 
Here, we investigate the evolution of phenotypic plasticity in a vastly different setup: 
Avida, an experimental digital evolution system that maintains populations of self-
replicating and evolving computer programs with a simplified (but Turing complete) 



assembly language as its genetic basis.  These “digital organisms” have been shown to 
evolve traits of significant complexity [18], but previous work has focused on 
constant environments and hence rigid solutions. We find that our preliminary results 
are surprisingly parallel to those from the neural net community and suggest 
fundamental biological principles that can be applied toward understanding the 
evolution of intelligence. 

3   Methods 

Avida is an established experimental evolution platform where digital organisms 
compete for space in a two-dimensional grid [12-17]. There is no explicit fitness 
function in Avida; instead, organisms compete for limited space and those that 
replicate the fastest are most successful. Organisms must copy their own genomes and 
then execute a divide instruction, to produce an offspring. The copy process is 
imperfect, however, which introduces the variation that fuels natural selection. In the 
experiments performed here, the copying of a given instruction occasionally results in 
a copy error (0.75% of the time). When this happens, an instruction is chosen at 
random from the available set (N=26) and written to the target location (see [13] for 
details on the instruction set).  There are also insertion and deletion mutations, which 
introduce or delete an instruction at random in 5% of offspring. All mutations affect 
only the genome of the offspring.  The population size is 3,600. While the genome 
size can vary, the ancestral organism is 100 instructions long. The ancestor starts with 
the ability to self-replicate, but is largely blank with 85 of its instructions set to a 
mostly neutral ‘no operation’ command.  

Digital organisms can improve their speed of reproduction either by decreasing the 
number of instructions it takes to produce an offspring or by performing tasks that 
increase their metabolic rate (rate of executing instructions). The initial metabolic rate 
for any organism is approximately proportional to its genome length (see [12] for a 
more detailed explanation). This number is then doubled or halved each time a task is 
performed, depending on whether the task is rewarded or punished. The tasks in this 
experiment are the logic functions NOT and NAND. Each organism can input three 
32-bit numbers.  They can manipulate those numbers and output the result. If they 
output the logical bitwise negation of one of the numbers or the bitwise nand of any 
two, they have performed the NOT or NAND task, respectively. The manipulation of 
these numbers occurs as organisms push and pop them to stacks or move them 
between registers using instructions such as push, pop, add (combines the 
numbers in the two specified registers and places the result in a third), shift-r (bit 
shift right), etc.  

In order to adapt to their environment, organisms need to be able to sense it. For 
these experiments, the typical Avida IO instruction, which simultaneously inputs and 
outputs a number, was changed to IO-Feedback.  This new instruction is identical 
to IO except that it provides the organism with knowledge of the impact the output 
had on their metabolic rate. When IO-Feedback is executed, if the organism’s 
metabolic rate increased (because it performed a task currently being rewarded), a 1 is 
placed on the top of its active stack. If its metabolic rate is diminished (because it 



performed a task being punished), a -1 is placed on the top of its active stack. If the 
output had no impact on its metabolic rate (because it was not the negation of one of 
the three numbers or the nand of two of them), a 0 is placed on the top of its active 
stack. Organisms have flow-control instructions available that allow them to jump to, 
or skip over, sections of code in their genomes. An organism could, for example, 
execute a set of instructions that perform NOT and then repeat those instructions if the 
number atop their active stack is 1. The instruction set used here is Turing complete, 
meaning that it can perform any computable function. Therefore, any sophisticated 
conditional execution flow should in principle be able to evolve; the only remaining 
questions are whether natural selection discovers such complexity and, if it does, 
whether it will cost too much to be advantageous to the organism [12, 18]. 

4   Experiments and Results 

To challenge the organisms to evolve plasticity, the population is alternately exposed 
to two different environments.  In the Not+Nand- environment, performing NOT 
doubles an organism’s metabolic rate and performing NAND halves it (the ‘+’ 
indicates reward, the ‘-’ indicates punishment). In the Not-Nand+ environment, the 
reverse is true. The environment shifts every 100 updates. Updates are the standard 
unit of time in Avida where each organism, on average, executes 30 instructions. 
Since in this experimental setup it normally takes organisms around 300 instructions 
to copy themselves, switching environments every 100 updates is equivalent to 
switching it approximately every ten generations. Because each trial lasts for 100,000 
updates, there are 500 full cycles through the two alternating environments. 

4.1   Experiment One 

Our first experiment uses this setup to investigate whether the digital organisms will 
evolve phenotypic plasticity when their environment is uncertain.  In this experiment, 
there are no restrictions on how often an organism can perform a task, so an 
organism’s metabolic rate can be doubled or halved any number of times.  In 13 of 50 
trials, the final dominant organism alters the number of tasks it performs depending 
on which environment it is in. In 8 of these 13 trials, the flexibility results in a net 
positive reward in both environments.  In the other 4 trials the plasticity is used to 
decrease the number of punished tasks being performed, but the punishments still 
exceed the rewards in one environment. 

We next determined how these organisms are able to adapt to their environment. 
The same strategy is used in all 8 trials where the final dominant organism has a 
positive score in both environments. In one sense, these organisms are indeed 
‘adapting’ because they end up performing different tasks in different environments. 
In another sense, however, they are not adapting at all; they execute the exact same 
series of instructions irrespective of what environment they are in. The organisms 
make no use of instructions that would make their execution flow conditional. Instead, 
they have discovered a string of instructions that results in behaviors that are tuned to 



the environment they find themselves in. Table 1 reports on which tasks are 
performed by the final dominant organisms from two example trials from experiment 
1. The first organism does not adapt to its environment while the second does. 

Table 1.  The result of running the final dominant organism from two example trials from 
experiment 1 in two different environments. During evolution the organisms alternately 
encountered these two environments. The first organism always performs the same task set, 
which is beneficial in one environment and deleterious in the other. The second organism is 
able to adapt to the environment. It performs X NANDs and either 0 or >X NOTs, ensuring a 
net positive bonus. This same basic technique is used by the final dominant organism in all 8 
trials in experiment 1 where the evolved plasticity resulted in positive fitness scores in both 
environments. Interestingly, the technique produces adaptation despite executing the same 
series of instructions. See text and Fig. 1 for an explanation of how.  

Not+Nand- Environment Not-Nand+ Environment Static 
Execution 
Flow 
Plasticity? 

Dynamic 
Execution 
Flow 
Plasticity? 

NOTs  NANDs  Score NOTs  NANDs  Score    
2 0 2 2 0 -2 No No 
102 51 51 0 51 51 Yes No 

 
The way the organisms are able to produce different numbers of tasks in different 

environments with the same series of executed instructions is simple and clever. The 
strategy involves putting different inputs into the same function to get different 
results. Using the information sensed from the environment as an input into a 
function, the resultant behavior can be modified based on the environment. The eight 
final dominant organisms that end up with positive rewards in both environments use 
simple variations on the theme shown in Figure 1.  

This result emphasizes that evolution sometimes selects simple but effective 
solutions over complex, elegant ones. A sophisticated manipulation of execution flow 
was not needed to produce genomes that are adapted to both environments. However, 
many forms of sophisticated intelligence will require the ability to dynamically 
change the way that actions are determined. As such, it is worthwhile to determine the 
conditions under which dynamic execution flow phenotypic plasticity evolves (i.e. 
organisms that execute different programs in response to varying environmental 
conditions). To do so, we must understand how a static solution can be more fit than a 
dynamic solution. Why do organisms always perform a large number of NANDs? 
Why don’t they regulate the performance of both tasks instead of just regulating 
NOT? It could be because it is easy to outcompete the current dominant static strategy 
by making a slightly better static strategy. If there is a population of organisms that do 
0 or 20 NOTs and 10 NANDS, for a net reward of 10 in either environment, it is not 
uncommon to mutate to perform 0 or 22 NOTs and 11 NANDs for a net reward of 11. 
A mutation simply needs to make the organism run this loop one more time. Compare 
that to the challenge of setting up the necessary instructions to do the following: “if x, 
do instructions A,B,C; else, do D,E,F.” This hypothesis motivates our second 
experiment. 



 

Fig. 1. The same series of instructions in two different environments leads to different results. 
Once the environment produces a difference in the stacks of the organisms, they can use it as an 
input to a function and produce two different results. If NOT is being rewarded, NAND is being 
punished. In environment 1, taking the correct answer for NAND and adding 2 to it produces a 
number that is no longer a correct answer for the NAND task (the 2 comes from 1 + the stack 
value of 1). Outputting this number does not result in either a reward or a punishment. In 
environment 2, adding 0 to the correct answer for NAND leaves it unchanged, and outputting 
this number yields the reward (the 0 comes from 1 + the stack value of -1).   

4.2   Experiment Two 

In our second experiment we cap the number of tasks for which an organism can be 
rewarded or punished to 10. Because in the previous experiment it was easy to extend 
the static strategy indefinitely, organisms did not need to use dynamic execution flow 
to regulate both of their tasks. Instead, they only regulated the NOT task (see Table 
1). With a cap of 10, every punished task takes away from a potential rewarded task. 
The only path to the maximal fitnesses is through regulation of both tasks. Aside from 
this cap, experiment 2 is identical to experiment 1.  

The results in this setup are quite different from experiment 1. In experiment 2, the 
final dominant organism in 23 of 50 trials alters its task output based on which 
environment it is in. In 15 of these 23 trials, the final dominant organism achieves a 
net positive score in both environments. All but one of these 15 organisms employs 
dynamic execution flow (in contrast with 0 final dominant organisms using dynamic 
execution flow in experiment 1). The average replication speed (fitness) across all 50 
trials is shown in Fig. 2a. An individual trial where plasticity evolved is shown in Fig. 
2b.  The breakdown of what tasks it performs in each environment is presented in 
Table 2. 



 

 

Fig. 2. The replication speed (fitness) for (A) the average of the 50 trials in experiment 2 in 
which the maximum number of times an organism can do a task (whether rewarded or 
punished) is set to 10, and (B)  an example trial from this experiment where organisms have 
evolved to have high fitnesses across both environments (something that in this trial occurs 
about halfway through the experiment).  

Table 2. The example organism from Fig. 2b. demonstrates a perfect ability to adapt to the two 
environments it is faced with. In environment 1, it gets rewarded 10 times for NOT (the 
maximum). In environment 2, it gets rewarded 9 times for NAND and punished once for NOT. 
It is not possible for an organism to perform better, as it must perform its first task without 
knowledge of which environment it is in. Thus, the first task performed will inevitably be 
punished in one of the two environments.  

Not+Nand- Environment Not-Nand+ Environment Static 
Execution 
Flow 
Plasticity? 

Dynamic 
Execution 
Flow 
Plasticity? 

NOTs  NANDs  Score NOTs  NANDs  Score    
16 0 10 1 32 9 Yes Yes 

 
The example organism from Table 2 (the final dominant from the experiment 

shown in Fig. 2b) attains the best score possible across the two environments. In 
Not+Nand- it ends up with 10 rewards (the max), and in Not-Nand+ it ends up with 9 
rewards and 1 punishment. Since an organism must perform a NOT or NAND in 
order to determine which environment it is in, the best it can do is suffer just one 
poison in one of the two environments, as this organism does. Note: while all tasks 
performed above the cap of 10 (e.g 6 of the 16 NOTs) do not benefit the organism, 
performing them need not involve much or any extra cost for the organism. Evolution 
frequently produces designs that are ‘good enough’ instead of perfect. [19-24]  

A question remains as to whether this organism’s ability to adapt is derived from 
execution-flow plasticity. Is it changing which instructions it executes based on 
information from the environment? The answer in this case is yes. Fig. 3 presents a 



graphic representation of the instructions executed in the different environments by 
the final dominant organism from this case-study trial.   

 

 

Fig. 3. A graphical representation of the instructions executed by the final dominant genome 
from the trial described in Fig. 2b and Table 2 when placed in environments 1 & 2. The small 
circles that make up the circumference represent each instruction in the genome of the 
organism. Arcs start on an executed instruction and land on the next one to be executed. Thin 
gray arcs indicate clockwise jumps and thick black arcs indicate counter-clockwise (backward) 
jumps. The height of the arc corresponds to the number of times that arc was traversed. 
Instructions that are never touched by an arc (as is the case with roughly half of the instructions 
in this organism) are not executed but do serve regulatory functions since they are traversed 
during replication. In both environments a series of instructions is executed before entering the 
looping area where tasks are performed. In environment 1, the organism repeats the same loop 
over and over, performing a NOT each time. In environment 2, the organism shortens the size 
of the loop after the first iteration and thus executes fewer instructions per subsequent iteration. 
This subset of instructions performs a NAND (and only a NAND) each iteration. The trigger to 
change the size of the loop is based on whether the NOT produced by the first iteration through 
the loop was rewarded or punished. The organism is thus able to change its behavior in 
response to the environment. It has evolved dynamic-execution-flow phenotypic plasticity.  

5   Discussion and Conclusion 

Our experiments demonstrate that natural selection will take advantage of simple 
static solutions that work across dynamic environments if they are available and 
advantageous. In our first experiment, a plastic solution using dynamic execution flow 
would have yielded high fitness values. Instead, selection reached high fitness values 
via a simpler static execution flow type of plasticity. Stanley et al. challenged static 
networks with dynamic environments and did not expect selection to discover a 
solution, but it did [3]. They tried a second experiment in which the network 



topologies could evolve over time. This simultaneously opened up the possibility of 
dynamic execution flow and made it difficult for static execution flow solutions to 
work. (Stanley, personal communication) In this second experiment, dynamic 
execution flow based plasticity evolved to produce highly fit organisms. Nofli et al. 
also challenged evolution with environments so different that, seemingly, only 
dynamic execution flow based strategies could work. Sure enough, they evolved [11]. 
A conclusion is suggested: while natural selection will take advantage of simple static 
solutions to a dynamic environment if they exist, in environments where dynamic 
solutions are more likely to gain the highest fitness values, natural selection can 
employ them. The work of Stanley et al. and Nolfi et al. show that this principle holds 
for evolving neural nets. Our work shows that it holds in populations of evolving 
digital organisms that execute genomes consisting of a series of instructions.  

That we find similar results in such vastly different systems lends credence to the 
idea that these results describe evolution in general. As we have seen, there are two 
types of phenotypic plasticity: static-execution-flow plasticity and dynamic-
execution-flow plasticity. Whether one or both of them emerge depends on many 
factors. Here we demonstrated that the environmental challenge is one of those 
factors.  Dynamic execution flow, which seems so powerful that one might expect it 
to always be advantageous, does not evolve merely because it can. Rather, in a given 
environment, evolution may opt for a simpler available static solution that will “do the 
trick,” selectively speaking.   

Understanding how evolution works is of utility for engineers who want to apply 
evolutionary methods for practical purposes.  If one wishes to evolve a particular type 
of plasticity, one should do so using environments that make it actively advantageous 
for natural selection to produce it, rather than simply possible. Future research is 
needed to learn more about when natural selection results in these different types of 
plasticity. Hopefully, such knowledge will facilitate our efforts to evolve systems as 
complex and intelligent as those found in the natural world. 
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