
Investigating the Emergence of Phenotypic Plasticity in
Evolving Digital Organisms

Jeff Clune, Charles Ofria, Robert T. Pennock

Digital Evolution Lab, Michigan State University, 3114 Engineering Building,

East Lansing, MI, USA
{jclune, ofria, pennock5}@msu.edu

Abstract. In the natural world, individual organisms can adapt as their
environment changes. In most in silico evolution, however, individual
organisms tend to consist of rigid solutions, with all adaptation occurring at the
population level. If we are to use artificial evolving systems as a tool in
understanding biology or in engineering robust and intelligent systems,
however, they should be able to generate solutions with fitness-enhancing
phenotypic plasticity. Here we use Avida, an established digital evolution
system, to investigate the selective pressures that produce phenotypic plasticity.
We witness two different types of fitness-enhancing plasticity evolve: static-
execution-flow plasticity, in which the same sequence of actions produces
different results depending on the environment, and dynamic-execution-flow
plasticity, where organisms choose their actions based on their environment. We
demonstrate that the type of plasticity that evolves depends on the
environmental challenge the population faces. Finally, we compare our results
to similar ones found in vastly different systems, which suggest that this
phenomenon is a general feature of evolution.

1 Introduction

The field of evolutionary computation uses natural selection to automatically find
solutions to engineering problems [1, 2]. Frequently, these solutions are on par or
better than any human-produced solution [2]. However, most of these cases have
involved static solutions to static challenges [3]. If the challenge suddenly changed
even slightly, most organisms would not be able to adapt without further evolution. In
other words, these organisms exhibit little or no within-life, or ‘intralife’, adaptation.
Frequently, however, natural organisms or engineered solutions need to be robust
enough to handle noisy and dynamic environments. One way of doing this is to
evolve organisms in environments where the challenges they are presented with vary
over time. Certainly, if our long-term goal is to evolve truly intelligent systems, we
need to better understand how evolution can produce things that can intelligently
adapt, initially in simple and then in increasingly sophisticated ways, to changing and
novel situations.

2 Previous Work

One tactic researchers have used to evolve individuals that exhibit within-lifetime
adaptation is to provide natural selection with a hand-written learning module, such as
back propagation for neural networks. The researchers then investigate how evolution
takes advantage of this ability to learn [4-8] and whether the results of learning are
transferred to the genome via the Baldwin effect [9, 10]. Such research forces natural
selection to use human-designed learning mechanisms, however, as opposed to
discovering its own. A different approach—and the one taken here—is to use very
simple systems to investigate how the ability to adapt could evolve on its own.

One clear sign that an organism is capable of adapting is if it behaves differently in
two different environments. This kind of adaptive capacity is called phenotypic
plasticity. Investigating this characteristic, Nolfi et al. evolved neural network brains
for virtual robots in alternating light and dark environments [11]. The environments
were constructed such that bodies, brains and behavior tuned to one environment
would perform poorly in the other. They tested the evolved solutions by placing the
same genome in the two different environments and observed whether they behaved
differently. They found that in populations that evolved in alternately light and dark
environments, the individuals were tuned to whichever environment they were placed
in. Stanley et al. also used evolving neural networks to look at the evolution of
phenotypic plasticity [3]. They compared experiments where the connection weights
of neural networks never changed during the course of their life to those where
evolution could create and modify connection weights during a lifetime. Such changes
could be used to modify behavior in response to information sensed from the
environment. The individuals were evolved in environments where each type of food
randomly switched between nutritious and poisonous. Contrary to their expectations,
they found that the individuals in the fixed-connection weight treatment discovered a
simple solution that worked in all environments. The individuals executed the same
code, but the inputs into that code were different because of the environmental
differences, resulting in a different in behavior that was adapted to each environment.
They thus possessed phenotypic plasticity in spite of a static execution flow. On the
other hand, in the modifiable connection weight treatment the individuals developed
phenotypic plasticity using a dynamic execution flow. In both cases the phenotypic
plasticity enabled them to behave differently in the different environments. Ironically,
the ‘simple trick’ evolution discovered in the fixed-connection weight experiment was
more effective than the dynamic execution flow based strategy it discovered in
modifiable connection weight treatments.

In short, we identify two types of phenotypic plasticity: static-execution-flow
plasticity and dynamic-execution-flow plasticity. Which type prevails under natural
selection depends on many evolutionary factors, such as the environmental challenge
and or the genomic representation. Much of the research into evolving phenotypic
plasticity in silico has been done with neural networks controlling simulated robots.
But how general are the results? Can similar patterns be found in different systems?
Here, we investigate the evolution of phenotypic plasticity in a vastly different setup:
Avida, an experimental digital evolution system that maintains populations of self-
replicating and evolving computer programs with a simplified (but Turing complete)

assembly language as its genetic basis. These “digital organisms” have been shown to
evolve traits of significant complexity [18], but previous work has focused on
constant environments and hence rigid solutions. We find that our preliminary results
are surprisingly parallel to those from the neural net community and suggest
fundamental biological principles that can be applied toward understanding the
evolution of intelligence.

3 Methods

Avida is an established experimental evolution platform where digital organisms
compete for space in a two-dimensional grid [12-17]. There is no explicit fitness
function in Avida; instead, organisms compete for limited space and those that
replicate the fastest are most successful. Organisms must copy their own genomes and
then execute a divide instruction, to produce an offspring. The copy process is
imperfect, however, which introduces the variation that fuels natural selection. In the
experiments performed here, the copying of a given instruction occasionally results in
a copy error (0.75% of the time). When this happens, an instruction is chosen at
random from the available set (N=26) and written to the target location (see [13] for
details on the instruction set). There are also insertion and deletion mutations, which
introduce or delete an instruction at random in 5% of offspring. All mutations affect
only the genome of the offspring. The population size is 3,600. While the genome
size can vary, the ancestral organism is 100 instructions long. The ancestor starts with
the ability to self-replicate, but is largely blank with 85 of its instructions set to a
mostly neutral ‘no operation’ command.

Digital organisms can improve their speed of reproduction either by decreasing the
number of instructions it takes to produce an offspring or by performing tasks that
increase their metabolic rate (rate of executing instructions). The initial metabolic rate
for any organism is approximately proportional to its genome length (see [12] for a
more detailed explanation). This number is then doubled or halved each time a task is
performed, depending on whether the task is rewarded or punished. The tasks in this
experiment are the logic functions NOT and NAND. Each organism can input three
32-bit numbers. They can manipulate those numbers and output the result. If they
output the logical bitwise negation of one of the numbers or the bitwise nand of any
two, they have performed the NOT or NAND task, respectively. The manipulation of
these numbers occurs as organisms push and pop them to stacks or move them
between registers using instructions such as push, pop, add (combines the
numbers in the two specified registers and places the result in a third), shift-r (bit
shift right), etc.

In order to adapt to their environment, organisms need to be able to sense it. For
these experiments, the typical Avida IO instruction, which simultaneously inputs and
outputs a number, was changed to IO-Feedback. This new instruction is identical
to IO except that it provides the organism with knowledge of the impact the output
had on their metabolic rate. When IO-Feedback is executed, if the organism’s
metabolic rate increased (because it performed a task currently being rewarded), a 1 is
placed on the top of its active stack. If its metabolic rate is diminished (because it

performed a task being punished), a -1 is placed on the top of its active stack. If the
output had no impact on its metabolic rate (because it was not the negation of one of
the three numbers or the nand of two of them), a 0 is placed on the top of its active
stack. Organisms have flow-control instructions available that allow them to jump to,
or skip over, sections of code in their genomes. An organism could, for example,
execute a set of instructions that perform NOT and then repeat those instructions if the
number atop their active stack is 1. The instruction set used here is Turing complete,
meaning that it can perform any computable function. Therefore, any sophisticated
conditional execution flow should in principle be able to evolve; the only remaining
questions are whether natural selection discovers such complexity and, if it does,
whether it will cost too much to be advantageous to the organism [12, 18].

4 Experiments and Results

To challenge the organisms to evolve plasticity, the population is alternately exposed
to two different environments. In the Not+Nand- environment, performing NOT
doubles an organism’s metabolic rate and performing NAND halves it (the ‘+’
indicates reward, the ‘-’ indicates punishment). In the Not-Nand+ environment, the
reverse is true. The environment shifts every 100 updates. Updates are the standard
unit of time in Avida where each organism, on average, executes 30 instructions.
Since in this experimental setup it normally takes organisms around 300 instructions
to copy themselves, switching environments every 100 updates is equivalent to
switching it approximately every ten generations. Because each trial lasts for 100,000
updates, there are 500 full cycles through the two alternating environments.

4.1 Experiment One

Our first experiment uses this setup to investigate whether the digital organisms will
evolve phenotypic plasticity when their environment is uncertain. In this experiment,
there are no restrictions on how often an organism can perform a task, so an
organism’s metabolic rate can be doubled or halved any number of times. In 13 of 50
trials, the final dominant organism alters the number of tasks it performs depending
on which environment it is in. In 8 of these 13 trials, the flexibility results in a net
positive reward in both environments. In the other 4 trials the plasticity is used to
decrease the number of punished tasks being performed, but the punishments still
exceed the rewards in one environment.

We next determined how these organisms are able to adapt to their environment.
The same strategy is used in all 8 trials where the final dominant organism has a
positive score in both environments. In one sense, these organisms are indeed
‘adapting’ because they end up performing different tasks in different environments.
In another sense, however, they are not adapting at all; they execute the exact same
series of instructions irrespective of what environment they are in. The organisms
make no use of instructions that would make their execution flow conditional. Instead,
they have discovered a string of instructions that results in behaviors that are tuned to

the environment they find themselves in. Table 1 reports on which tasks are
performed by the final dominant organisms from two example trials from experiment
1. The first organism does not adapt to its environment while the second does.

Table 1. The result of running the final dominant organism from two example trials from
experiment 1 in two different environments. During evolution the organisms alternately
encountered these two environments. The first organism always performs the same task set,
which is beneficial in one environment and deleterious in the other. The second organism is
able to adapt to the environment. It performs X NANDs and either 0 or >X NOTs, ensuring a
net positive bonus. This same basic technique is used by the final dominant organism in all 8
trials in experiment 1 where the evolved plasticity resulted in positive fitness scores in both
environments. Interestingly, the technique produces adaptation despite executing the same
series of instructions. See text and Fig. 1 for an explanation of how.

Not+Nand- Environment Not-Nand+ Environment Static
Execution
Flow
Plasticity?

Dynamic
Execution
Flow
Plasticity?

NOTs NANDs Score NOTs NANDs Score
2 0 2 2 0 -2 No No
102 51 51 0 51 51 Yes No

The way the organisms are able to produce different numbers of tasks in different

environments with the same series of executed instructions is simple and clever. The
strategy involves putting different inputs into the same function to get different
results. Using the information sensed from the environment as an input into a
function, the resultant behavior can be modified based on the environment. The eight
final dominant organisms that end up with positive rewards in both environments use
simple variations on the theme shown in Figure 1.

This result emphasizes that evolution sometimes selects simple but effective
solutions over complex, elegant ones. A sophisticated manipulation of execution flow
was not needed to produce genomes that are adapted to both environments. However,
many forms of sophisticated intelligence will require the ability to dynamically
change the way that actions are determined. As such, it is worthwhile to determine the
conditions under which dynamic execution flow phenotypic plasticity evolves (i.e.
organisms that execute different programs in response to varying environmental
conditions). To do so, we must understand how a static solution can be more fit than a
dynamic solution. Why do organisms always perform a large number of NANDs?
Why don’t they regulate the performance of both tasks instead of just regulating
NOT? It could be because it is easy to outcompete the current dominant static strategy
by making a slightly better static strategy. If there is a population of organisms that do
0 or 20 NOTs and 10 NANDS, for a net reward of 10 in either environment, it is not
uncommon to mutate to perform 0 or 22 NOTs and 11 NANDs for a net reward of 11.
A mutation simply needs to make the organism run this loop one more time. Compare
that to the challenge of setting up the necessary instructions to do the following: “if x,
do instructions A,B,C; else, do D,E,F.” This hypothesis motivates our second
experiment.

Fig. 1. The same series of instructions in two different environments leads to different results.
Once the environment produces a difference in the stacks of the organisms, they can use it as an
input to a function and produce two different results. If NOT is being rewarded, NAND is being
punished. In environment 1, taking the correct answer for NAND and adding 2 to it produces a
number that is no longer a correct answer for the NAND task (the 2 comes from 1 + the stack
value of 1). Outputting this number does not result in either a reward or a punishment. In
environment 2, adding 0 to the correct answer for NAND leaves it unchanged, and outputting
this number yields the reward (the 0 comes from 1 + the stack value of -1).

4.2 Experiment Two

In our second experiment we cap the number of tasks for which an organism can be
rewarded or punished to 10. Because in the previous experiment it was easy to extend
the static strategy indefinitely, organisms did not need to use dynamic execution flow
to regulate both of their tasks. Instead, they only regulated the NOT task (see Table
1). With a cap of 10, every punished task takes away from a potential rewarded task.
The only path to the maximal fitnesses is through regulation of both tasks. Aside from
this cap, experiment 2 is identical to experiment 1.

The results in this setup are quite different from experiment 1. In experiment 2, the
final dominant organism in 23 of 50 trials alters its task output based on which
environment it is in. In 15 of these 23 trials, the final dominant organism achieves a
net positive score in both environments. All but one of these 15 organisms employs
dynamic execution flow (in contrast with 0 final dominant organisms using dynamic
execution flow in experiment 1). The average replication speed (fitness) across all 50
trials is shown in Fig. 2a. An individual trial where plasticity evolved is shown in Fig.
2b. The breakdown of what tasks it performs in each environment is presented in
Table 2.

Fig. 2. The replication speed (fitness) for (A) the average of the 50 trials in experiment 2 in
which the maximum number of times an organism can do a task (whether rewarded or
punished) is set to 10, and (B) an example trial from this experiment where organisms have
evolved to have high fitnesses across both environments (something that in this trial occurs
about halfway through the experiment).

Table 2. The example organism from Fig. 2b. demonstrates a perfect ability to adapt to the two
environments it is faced with. In environment 1, it gets rewarded 10 times for NOT (the
maximum). In environment 2, it gets rewarded 9 times for NAND and punished once for NOT.
It is not possible for an organism to perform better, as it must perform its first task without
knowledge of which environment it is in. Thus, the first task performed will inevitably be
punished in one of the two environments.

Not+Nand- Environment Not-Nand+ Environment Static
Execution
Flow
Plasticity?

Dynamic
Execution
Flow
Plasticity?

NOTs NANDs Score NOTs NANDs Score
16 0 10 1 32 9 Yes Yes

The example organism from Table 2 (the final dominant from the experiment

shown in Fig. 2b) attains the best score possible across the two environments. In
Not+Nand- it ends up with 10 rewards (the max), and in Not-Nand+ it ends up with 9
rewards and 1 punishment. Since an organism must perform a NOT or NAND in
order to determine which environment it is in, the best it can do is suffer just one
poison in one of the two environments, as this organism does. Note: while all tasks
performed above the cap of 10 (e.g 6 of the 16 NOTs) do not benefit the organism,
performing them need not involve much or any extra cost for the organism. Evolution
frequently produces designs that are ‘good enough’ instead of perfect. [19-24]

A question remains as to whether this organism’s ability to adapt is derived from
execution-flow plasticity. Is it changing which instructions it executes based on
information from the environment? The answer in this case is yes. Fig. 3 presents a

graphic representation of the instructions executed in the different environments by
the final dominant organism from this case-study trial.

Fig. 3. A graphical representation of the instructions executed by the final dominant genome
from the trial described in Fig. 2b and Table 2 when placed in environments 1 & 2. The small
circles that make up the circumference represent each instruction in the genome of the
organism. Arcs start on an executed instruction and land on the next one to be executed. Thin
gray arcs indicate clockwise jumps and thick black arcs indicate counter-clockwise (backward)
jumps. The height of the arc corresponds to the number of times that arc was traversed.
Instructions that are never touched by an arc (as is the case with roughly half of the instructions
in this organism) are not executed but do serve regulatory functions since they are traversed
during replication. In both environments a series of instructions is executed before entering the
looping area where tasks are performed. In environment 1, the organism repeats the same loop
over and over, performing a NOT each time. In environment 2, the organism shortens the size
of the loop after the first iteration and thus executes fewer instructions per subsequent iteration.
This subset of instructions performs a NAND (and only a NAND) each iteration. The trigger to
change the size of the loop is based on whether the NOT produced by the first iteration through
the loop was rewarded or punished. The organism is thus able to change its behavior in
response to the environment. It has evolved dynamic-execution-flow phenotypic plasticity.

5 Discussion and Conclusion

Our experiments demonstrate that natural selection will take advantage of simple
static solutions that work across dynamic environments if they are available and
advantageous. In our first experiment, a plastic solution using dynamic execution flow
would have yielded high fitness values. Instead, selection reached high fitness values
via a simpler static execution flow type of plasticity. Stanley et al. challenged static
networks with dynamic environments and did not expect selection to discover a
solution, but it did [3]. They tried a second experiment in which the network

topologies could evolve over time. This simultaneously opened up the possibility of
dynamic execution flow and made it difficult for static execution flow solutions to
work. (Stanley, personal communication) In this second experiment, dynamic
execution flow based plasticity evolved to produce highly fit organisms. Nofli et al.
also challenged evolution with environments so different that, seemingly, only
dynamic execution flow based strategies could work. Sure enough, they evolved [11].
A conclusion is suggested: while natural selection will take advantage of simple static
solutions to a dynamic environment if they exist, in environments where dynamic
solutions are more likely to gain the highest fitness values, natural selection can
employ them. The work of Stanley et al. and Nolfi et al. show that this principle holds
for evolving neural nets. Our work shows that it holds in populations of evolving
digital organisms that execute genomes consisting of a series of instructions.

That we find similar results in such vastly different systems lends credence to the
idea that these results describe evolution in general. As we have seen, there are two
types of phenotypic plasticity: static-execution-flow plasticity and dynamic-
execution-flow plasticity. Whether one or both of them emerge depends on many
factors. Here we demonstrated that the environmental challenge is one of those
factors. Dynamic execution flow, which seems so powerful that one might expect it
to always be advantageous, does not evolve merely because it can. Rather, in a given
environment, evolution may opt for a simpler available static solution that will “do the
trick,” selectively speaking.

Understanding how evolution works is of utility for engineers who want to apply
evolutionary methods for practical purposes. If one wishes to evolve a particular type
of plasticity, one should do so using environments that make it actively advantageous
for natural selection to produce it, rather than simply possible. Future research is
needed to learn more about when natural selection results in these different types of
plasticity. Hopefully, such knowledge will facilitate our efforts to evolve systems as
complex and intelligent as those found in the natural world.

Acknowledgments. The research for this paper was funded by the Cambridge
Templeton Consortium, the National Science Foundation, and a fellowship to JC from
the Quantitative Biology & Modeling Initiative at Michigan State University. We
thank the anonymous reviewers and the members of the Evolving Intelligence and
Digital Evolution Labs at Michigan State University, in particular Jeff Barrick, Sherri
Goings, Dusan Misevic, Kaben Nanlohy, Brian Baer and Richard Lenski.

References

1. Holland, J.J.: Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor (1975)

2. Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., Lanza, G.: Genetic
Programming: Routine Human-Competitive Machine Intelligence. Kluwer, New
York (2003)

3. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Evolving Adaptive Neural
Networks with and without Adaptive Synapses. IEEE Congress on Evolutionary
Computation. IEEE Press, Canberra, Australia (2003)

4. Nolfi, S., Floreano, D.: Learning and Evolution. Autonomous Robots 7 (2004)
89-113

5. Ackely, D.E., Littman, M.L.: Interactions between Learning and Evolution.
Proceedings of the Second Conference on Artificial Life. Addison-Wesley,
Reading, MA (1991)

6. Belew, R.K., McInerney, J., Schraudolph, N.N.: Evolving Networks: Using the
Genetic Algorithm with Connectionist Learning. CSE Technical Report CS89-
174. University of California, San Diego (1990)

7. Whiteson, S., Stone, P.: Evolutionary Function Approximation for Reinforcement
Learning. Journal of Machine Learning Research (2006) 877-917

8. Nolfi, S.: Learning and Evolution in Neural Networks. Adaptive Behavior 3
(1994) 5-28

9. Baldwin, J.M.: A New Factor in Evolution. American Naturalist (1896) 441-451
10. Hinton, G.E., Nowlan, S.J.: How Learning Can Guide Evolution. Complex

Systems (1987) 495-502
11. Nolfi, S., Miglino, O., Parisi, D.: Phenotypic Plasticity in Evolving Neural

Networks. (1994) 146-157
12. Ofria, C., Wilke, C.O.: Avida: A Software Platform for Research in

Computational Evolutionary Biology. Artificial Life 10 (2004) 191-229
13. Lenski, R.E., Ofria, C., Collier, T.C., Adami, C.: Genome Complexity,

Robustness and Genetic Interactions in Digital Organisms. Nature 400 (1999)
661-664

14. Ofria, C., Adami, C., Collier, T.C.: Design of Evolvable Computer Languages.
IEEE Transactions on Evolutionary Computation (2002) 420-424

15. Misevic, D., Ofria, C., Lenski, R.E.: Sexual Reproduction Reshapes the Genetic
Architecture of Digital Organisms. Proceedings of the Royal Society London,
Series B. 273 (2006) 457-464

16. Adami, C., Ofria, C., Collier, T.C.: Evolution of Biological Complexity.
Proceedings of the National Academy of Sciences 97 (2000) 4463-4468

17. Goings, S., Clune, J., Ofria, C., Pennock, R.T.: Kin-Selection: The Rise and Fall
of Kin-Cheaters. Proceedings of Artificial Life Nine (2004) 303-308

18. Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C.: The Evolutionary Origin of
Complex Features. Nature 423 (2003) 139-144

19. Darwin, C.: On the Various Contrivances by Which British and Foreign Orchids
Are Fertilized by Insects. Murray, London (1862)

20. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)
21. Dawkins, R.: The Blind Watchmaker. Penguin, London/Norton, New York

(1986)
22. Gould, S.J.: The Panda's Thumb: More Reflections in Natural History Norton,

New York (1980)
23. Gould, S.J., Lewontin, R.C.: The Spandrels of San Marco and the Panglossian

Paradigm: A Critique of the Adaptationist Programme. Proceedings of the Royal
Society of London 205 (1979) 281-288

24. Jacob, F.: Evolution and Tinkering. Science (1977) 1161-1166

