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Goal

e Share ideas that are
e exciting

 powerful: enable us to solve previously unsolved problems
* Iinsightful
* true path

e not well-known in ML, but useful in ML

* developed outside traditional ML community
 population-based methods
* but broadly applicable

* non-population based methods (e.g. RL, deep learning)
 beyond neural networks

decision trees, program synthesis, etc.



Goal

e Introduce
e hew methods
* new types of problems

* including two grand challenges



Topics Covered & Schedule

* Novelty Search

e Quality Diversity

e Q&A (5 minutes)

* Open-Ended Search

* Indirect Encoding

* | ooking Forward & Conclusions

e QO)&RA



Population-based Search

* Main idea: Maintain a population of candidate solutions

GAN population development

- RS
42 45 48 51 54 57 60 63 6.6
Inception Score

From: Deepmind Blog post on PBT



Population-based Search

« Canonical example:
Vanilla Genetic Algorithm

« Randomly initialize all members of
population

* [teratively:
« Evaluate population
 Cull population
« Make noisy copies

* Not a convincing case for benefits of a
population
« Convergent
« One BBO among many

from David Ha




Diversity-centric Search

* Encouraging diversity as a central drive

* Novelty search (Lehman and Stanley 2008)
« What would a search process driven only by diversity look like?

» Hypothesis: Diversity-centric search might be necessary to
scale to our most ambitious ML objectives

« Why?



Objectives and Objective Functions

* Objective functions are ubiquitous in ML
* Measure of quality of a solution
« Implicitly defines an objective to reach (by optimizing OF)

* The issue of local optima
« Sometimes objective functions are smooth and easy to optimize
« Sometimes optimization is more difficult because of thorny local optima

* Would our problems be solved if we simply created more
powerful optimization algorithms?









Deception

* The problem of deception: When aimed at ambitious
objectives, the objective function often becomes a false
compass

« Stepping stones to objective often seemingly unrelated to
objective
* From abacuses to laptops [electricity, vacuum tubes]
* From prokaryotes to humans [multicellularity, development, neurons]
« From random init to highly-intelligent robotic control policies [?]



The Problem with Ambitious Objectives

* Hopeful assumption: Improved performance will lead to greater
improvements, all the way to success

* Doesn’t always work (local optima), which motivates:
 Curriculum learning (Bengio et al. 2009)
« Reward shaping/engineering (Ng et al. 1999)
* Intrinsic motivation (Oudeyer and Kaplan 2007, Schmidhuber 1991)
* Optimal reward functions (Singh et al. 2010)

* Overarching issue:
Stepping stones to success don’t always resemble success
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Towards more creative search

» Radical idea:
Can search that is ignorant of its intended objective sometimes
outperform search that is aimed directly at its objective?
« Can pursuing an ambitious objective undermine attaining it?

* What could instantiate a more open-ended search?
« Creative, divergent forces?



Novelty Search

 Guiding search only by novelty

* Objective-driven heuristic: What improves performance locally is
a stepping stone towards great performance

* Novelty-driven heuristic: What is novel may
lead to further novelties




Novelty Search Algorithm

» Take a population-based search algorithm

» Replace standard goal-based objective function with measure of
behavioral novelty
« Measured relative to current population and archive of previously-novel

* Over generations, search spreads out over the behavior space

O o @
1 ~—k : O oo g ®
p(x) = > dist(x, ui) 0% %o

k-Nearest Neighbors

distance Behavior space









Visualization in Maze Navigation

Novelty Objective
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Visualization in Maze Navigation

Novelty
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Biped Locomotion

Objective

Novelty

(Lehman and Stanley 2012)




Works in Deep RL context too

* As an extension of OpenAl's ES (Conti et al. 2018)
 As an extension of Uber’s Deep GA (Such et al. 2017)

o
30 —— ES w/Exploration

G tion 700. Re { 30 0 100 200 300 400 500 600 700 800

Generation Number
(Conti et al. 2018)



Related Work

« See also:
Autonomous mental development / intrinsic motivation /
curiosity (Oudeyer and Kaplan 2007, Schmidhuber 1991)

From: (Oudeyer et al. 2007)




Related Ideas in Deep RL

* DIAYN (Eysenbach et al. 2018)
 Curiosity-driven exploration (Pathak et al. 2017)

« Skew-fit (Pong et al. 2019)
* Hindsight Experience Replay (Andrychowicz et al. 2017)
* Unsupervised Meta-learning (Gupta et al. 2018)



Diversity is All You Need: Learning
Diverse Skills without a Reward Function
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Curiosity-driven Exploration by Self-
Supervised Prediction
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Novelty Search Conclusions

* Pressure towards creative divergence alone can sometimes
outperform directly seeking the objective

« But what about the pressure to achieve (also a key force in
biological and technological evolution)?



Combining Novelty and Achievement
(Mouret and Doncieux 2012)

* While raw novelty can work, natural to merge novelty pressure
with pressure to achieve

« Many paradigms: Weighted average of objective + novelty; objective
until stuck, then switch to novelty; etc.

« Effective in practice: Population-based multi-objective
optimization
(Fonseca et al. 1995)

« Simultaneously explore all trade-offs between objectives



Population-based Multi-objective
Optimization

* Popular algorithms include NSGA-II (Deb et al. 2002)
* Main idea: Maintain pareto front of non-dominated solutions

* A>B only if .
* objective_score(A) > objective_score(B) and f *J
 novelty(A) > novelty(B) IT
 Another interesting possibility A C @ @
enabled by maintaining a population N @
Novelt xg S
y et R
3
f2(A) < £2(B) 2

Objective score



Diversity + Performance as Equals

* Problems with combining novelty and
global competition objective

 Does not address the fundamental
problem of deception

 Embodies paradigm of diversity in service
of progress

* What about an algorithm with equal
priority to diversity and performance?

* To optimize towards the best version of
each possible solution niche?




Quality Diversity (Pugh et al. 2016)

* Different kind of search process:
Find the best possible example of each achievable behavior

* Build a repertoire of different ways to solve a problem

 Highlights a wide range of possible designs that a designer can choose
from

« Can enable a robot to adapt to new circumstances
« Can circumvent deception by creating an implicit curriculum



Quality Diversity

« Sometimes objective performance not the most important factor
* [lluminate the space of diverse possible solutions

« Diversity in how a problem is solved sometimes more important/
interestina than aaining only the single-most efficient solution




Quality Diversity

« Sometimes objective performance not the most important factor
* [lluminate the space of diverse possible solutions

« Diversity in how a problem is solved sometimes more important/
interestina than aaining only the single-most efficient solution

3 years to sexual maturity

20 minutes to sexual
maturity



lllustrative Domain: Virtual Creatures

« Evolve both the morphology and controller of a virtual robot

* What if we want to see the best possible locomotion strategies
for all areas of a morphology space?




Morphology Space

* Height
 Mass
« Number of Active Joints

Height




Novelty Search with Local Competition
(Lehman and Stanley 2011)

» Global competition:
Niches with higher capacity for objective performance favored

« Compete globally on absolute performance score

* Local competition:
Niches are explored relative to their local capacity for

performance

« Compete locally: how many of your morphological nearest-neighbors
do you out-perform?



Novelty Search with Local Competition

1\\L [
Novelt E\SR -
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f2(A) < £2(B) 2
Local competition
score




Exploring the Morphology Space

Novelty Objective Global Competition  Local Competition










Traditional machine learning methods produce
little diversity

Salimans, Ho, Chen, Sidor, Sutskever 2017



Population-based methods also produce little
diversity

We gave evolution four materials:

. Muscle: contract then expand

D Tissue: soft support

. Muscle2: expand then contract

- Bone: hard support

Cheney, MacCurdy, Clune, Lipson 2013




Quality Diversity Algorithms

e a diverse set of high-performing agents (policies)



Challenge: Diversity & Performance

e Quality diversity algorithms
* Novelty Search + Local Competition (Lehman & Stanley)



Challenge: Diversity & Performance

e Quality diversity algorithms
* Novelty Search + Local Competition (Lehman & Stanley)
+ MAP-Elites (Mouret & Clune)

Jean-Baptiste Mouret



MAP-Elites

Mouret & Clune 2015

 Multi-dimensional Archive of Phenotypic Elites
- Choose dimensions of interest in behavior space

» Discretize

 Mutate, locate, replace if better, repeat
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MAP-Elites

Mouret & Clune 2015

 Multi-dimensional Archive of Phenotypic Elites

- Choose dimensions of interest in behavior space
» Discretize
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MAP-Elites

Mouret & Clune 2015

 Multi-dimensional Archive of Phenotypic Elites
- Choose dimensions of interest in behavior space
» Discretize
 Mutate, locate, replace if better, repeat
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MAP-Elites

Mouret & Clune 2015

 Multi-dimensional Archive of Phenotypic Elites

- Choose dimensions of interest in behavior space
» Discretize
 Mutate, locate, replace if better, repeat
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MAP-Elites

Mouret & Clune 2015

 Multi-dimensional Archive of Phenotypic Elites

- Choose dimensions of interest in behavior space
» Discretize
 Mutate, locate, replace if better, repeat
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MAP-Elites

Mouret & Clune 2015

 Multi-dimensional Archive of Phenotypic Elites

- Choose dimensions of interest in behavior space
» Discretize
 Mutate, locate, replace if better, repeat
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MAP-Elites

Mouret & Clune 2015

 Multi-dimensional Archive of Phenotypic Elites

- Choose dimensions of interest in behavior space
» Discretize
 Mutate, locate, replace if better, repeat
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MAP-Elites

Mouret & Clune 2015

 Multi-dimensional Archive of Phenotypic Elites

- Choose dimensions of interest in behavior space
» Discretize

- Mutate, locate, replace if better, repeat =====
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Soft Robots Problem

Mouret & Clune 2015

e Dimensions

* number of voxels
* % bone (dark blue)




Soft Robots Problem

Mouret & Clune 2015

Classic Optimization Classic + Diversity MAP-Elites
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num voxels

EA multi-objective EA same # evals!



Same agents,
from the side
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Different Runs: Soft Robot Problem

Classic Optimization Classic + Diversity MAP-Elites
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Global performance Reliabhility Precision Coverage
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Retina Problem

(b) Traditional EA (d) Random Sampling

Mouret & Clune 2015

(e) MAI-Llites




“Goal Switching”

Nguyen, Yosinski & Clune 2016

* When trying to solve task A, if you make progress on task B
* keep the innovation and let it keep working on B




Goal Switching:
Key for Science & Technological Innovation

e Radar == MIiCcrowaves

e Vacuum tubes =P computers G

Cannot Be Planned

e basic physics == clean energy (nuclear)
e elcC.




Serendipity

* \We want our algorithms to capture serendipitous discoveries
e QD does that via Goal Switching

MAP-Elites

00 01 02 03 04 05 06




Goal Switching

retina problem color = reward MAP-Elites Mouret & Clune 2015



Automated Curricula Learning

MAP-Elites Lineages of a Few Final Solutions

MAP-Elites Mouret & Clune 2015



Innovation Engines

Nguyen, Yosinski & Clune 2015

Interesting? 9 Interesting? 9 Interesting?

* Nature, Culture, & QD algorithms are Innovation Engines
e generate permutations of previous interesting things
e |f Interesting, keep them
e repeat



Innovation Engines

Nguyen, Yosinski & Clune 2015

) S

Interesting-ness

Evaluator

Collector &
GGenerator

MAP-Elites

one bin per ImageNet class AlexNet

Encodings: Small CPPN networks



Goal Switching
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Goal Switching

 Many-class MAP-Elites vs. One-class MAP-Elites
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Nguyen, Yosinski & Clune 2015



Goal Switching
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Goal Switching Enables Good Ideas to Spread

 Fundamental advances spread to other problems/niches
* Then are built upon to solve that specific problem
e “Adaptive Radiations”




tench
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Hindsight Experience Replay

Andrychowicz et al. 2017

RL algorithm

* single agent

e uses goal-conditioned Q-learning

Try to go to a goal

If you end up somewhere else, pretend that was your goal

e goal switching!

Eventually learn the highest-quality way to do a diverse set of things
o effectively is a QD algorithm

* where the “population” is in goals for one agent, not a population of agents



Multi-Modal Agents

CMOEA. Huizinga & Clune 2018

* \Wanted: robots that can perform many different actions/skills

* in different contexts (e.g. options hierarchical RL)
* solve different problems

* |Insight: QD algorithms can help produce such generalists

&by

Move Forward Move Backward Turn Left Turn Right




Multi-Modal Agents

CMOEA. Huizinga & Clune 2018

* A curriculum probably helps
e \Which one?




CMOEA

Huizinga & Clune 2018

* |dea: one niche per
e single task
 combination of tasks



CMOEA

Huizinga & Clune 2018




CMOEA

Huizinga & Clune 2018

Robotics Task Performance (75,000 generations)
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Move forward



Other Applications of Quality Diversity Algorithms



THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

Back on its feet

Using an intelligent trial-and-error learning
algorithm this robot adapts to injury in minutes
PAGES 426 & 503
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Robots that adapt
liIke animals

Nature 2015

Antoine Cully Jeff Clune Danesh Tarapore Jean-Baptiste

Mouret
UPMC Université UniversitLonyoming UPMC Universite UPMC Université
France SA France France






Damage Recovery

Damage occurs
(leg loses power)




Modern, Learning-Based Approaches

e Simple robots (low-dimensional state & action spaces)

 Require lots of real-world trials

Yosinski et al. 2013 Kohl & Stone 2004 Bongard et al. 2006



Animals

 Have intuitions about different ways to move

e Conduct a few, intelligent tests

* Pick a behavior that works despite injury




Robots that Adapt Like Animals

 Have intuitions about different ways to move

e Conduct a few, intelligent tests

\ Damage occurs
(leg loses power)

* Pick a behavior that works despite injury

iINntuitions about . . pDIcK one that works
few, intelligent tests .
despite injury

different ways to move
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iINtuitions about

different ways to move
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INntuitions about
different ways to move

Leg that touches the
ground less than 10%
of the time




Corner Case: Feet never touch the ground




INtuitions about

different ways to move

Dim 1

Dim 1 Dim 2

Dim 4

Dim 3
Dim 5

Dim 6

0 ol sl ol
Jddl @ "aa
AN 134848
A8 Y113 a

LI

AN INAEN JdJdus
"
-
o
-
1

AW T e A
SEERAEEER I3dinw
SRR EIEER aRREEs
dOOE DSOS NS
COSE 000 S s .
il e N E T
NAEES ANEES J53Ev
REIJJORSSSERdSlas
HOSS s &S0k ol il b
KL Ouiddee 970 d
EECEEN SN GE ESane
Ll Erlrrerrrr
IR LI e -FF T

NN~
NEEAEZTS

ROl biEEEE N EEEN TYNEE
HESREODOON CODERDOSNE SeYeEw
ol L inde ] Ralsia ) ) Rl L LR LU
RN ENNONNOGREE NI DEE Sy SN
TR R T S S S R

BEOJUENOUNE SENNE SSNEW
EQOEE DA SODNEE SSSE.
L rsad SRt e C i -
e BEET L RIS DRSS <T T RS =] [

Initial Map

Oty nncioOF heaETY
 LEFLITRELLIBEFT .
EEHIJdSmAddnE akads

T E R T TECFERE

HOATH EANERE M ROEF RO SRERED

On the simulated,
undamaged robot



INtuitions about

different ways to move

Dim 1

Dim 1 Dim 2

Dim 4

Dim 3
Dim 5

Dim 6
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few, intelligent tests

Which behaviors should we test”?

Damage occurs
(leg loses power)



INtuitions about

different ways to move

few, intelligent tests

Dim 1

Dim 1 Dim 2

Dim 4

Dim 3
Dim 5

Dim 6
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Initial Map

Could try top N:

But they are likely very similar.

Damage occurs
(leg loses power)




INtuitions about

different ways to move

Dim 1

Dim 1 Dim 2

Dim 4

Dim 3
Dim 5

Dim 6
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few, intelligent tests

Bayesian Optimization:

Tries different types solutions

Damage occurs
(leg loses power)



Bayesian Optimization

Stop when:

A real
behavior IS >90% of
best untested point

Posterior:
Map updated after

Prior:
MAP-Elites Map

Wielgle

real-world tests
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A Pre-Processing in
simulation

/

.

parameter —pp»

Random

variation

T

Random
selection

from Repertoire

Evaluation in
simulation
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Replace if
best so far of this
behavior type
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“Intelligent Trial & Error’

iINntuitions about
different ways to move

few, intelligent tests picK one that works

despite injury

Bayesian
MAP-Elites Map Optimization
w Map as Prior

Found >90% of
Best Possible



Undamaged robot
controlled with
classic tripod gait
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Different Damage Conditions & Behavioral Descriptions

Walking Speed (m/s)
Default || Alternate
Behavioral Descriptor Descriptor 10-4

C2 C3 C4 C5 C6 C1 C3

Adaptation Time
and Number of Trials

Cl C2 C3 C4 C5 C6 C1 GC3
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all MAP-Elites
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Different Robot

Adaptation Time

and Number of Trials
130

125
120
115,
110
15

Joint stuck Joint with a
at 45° permanent 0

45° offset

Different Environments




Deep RL +
Intelligent Trial & Error

e Policy gradients to optimize
objective

e Store actions in each bin

* Population-based policy
gradients

Map-based Multi-Policy Reinforcement l.carning:
Enhancing Adaptability of Robots by Deep Reinforcement Learning

Ayaka Kume, Eichi Matsumoto, Kuniyuki Takahashi, Wilson Ko and Jethro Tan

Abstract—1In order for rohots to perform mission-critical
tasks, it is essential that they are able to quickly adapt to
changes in their environment as well as to injuries and or other
bodily changes. Deep reinforcement learning has been shown
to be successful in training robot contrel policies for operation
in complex environments. However, existing methods typically
employ only a single policy. This can limit the adaptability since
a large environmental modification might require a completely
different behavior compared to the learning environment. 1o
solve this preblem. we propoese Map-based Multi-Policy Rein-
forcement Learning (MMPRL), which aims to search and store
multiple policies that encode different behavioral features while
maximizing the expecled reward in advance of (he envirnnment
change. T'hanks to these policies, which are stored into a multi-
dimensional discrete map according to its behavioral feature,
adaptation can be performed within reasonable time without
retraining the robot, An appropriate pre-trained policy from
the map can be recalled vsing Ravesian optimization. Our
experiments show that MMPRL enables robots to quickly adapt
to large changes without requiring any prior knowledge on the
tvpe of injuries that could occur.

A highlight of the learned behaviors can be found here:
nttps: f/youtu. be/QwInbil1XNOE.

[. INTRCDUCTION

Humans and animals are well-versed n quickly adapting
‘0 changes in not only their surrounding environments, but
also to changes to their own bady, through previous expe-
riences and information from their senses. Some example
scenarios where such adaptation to environment changes
takes plece arc walking 1n a highly crowded scenc with a lot
of other people and objects, walking on uneven terrain, or
walking ggamnst a strong wind. On the cther hand, examples
of bodily changes could be wounds. incapability tc use
certain body parts due 10 12sk constraints, or when lifting
or helding something heavy. In a future where robdots are
omnipresent and used in mission critcal tasks, robots are
aal only expected o adap o unlamiliar scenarios and dis-
wurbances autonomously, but also 10 recover from adversaries
mm order to continue and complete their tasks successtully.
Furthcrmore, taking a long time o recover or adapt may
result 1n mussion fallure, while cxternal help might not be
avallable or even desirable, for example 1n search and rescue
missions. Therefore, robots need to be able to adapt to
changes in both the environment and their own body state,
within a limited amount or ume.

Recently, deep reinforcement learning (DRTL) has been

shown to be suceessfal in complex environments with both

All authors arc associated with Prefesred Networks, [rc., Tokyo,
Japan, (e2-mail :{)] matsumoto ] :
jet-anthpreferred. jp)

Fig. 1. "Twme lapse of the UpenAl Walker2D) model walking for 560 time
steps using a policy and succeading while intact (top), failing du2 to ¢ join:
kcing limited ‘middlzi, and succeeding again post-adaptasion despite the
Lmited joint markad o ored by selecling an appropriale policy using our
proposed merhod (hottom).

high-dimensional action and state spaces [1]. [2]. The success
of these studies relies on a large number of samples
the orders of millions, so re-training the policy after the
envircnment chanze 1s unrealist.c. Some methods avoid re
training by 1ncraasing the robustaess of an acquired policy
and thus increasing adaptability. In robust adversanal RL,
for example, an agent is traineC to operale in the presence
of a deswzbilizing adversary that applies disturbance forces
to the system [3] However, using only a single policy
limits the adaptebility ol the robot o large modifications
which requires completely different behavions compared 1w
its lcaming environment.

We propose Map-based Multu-Policy Reinforcement
Learning (MMPRL), which trains many diffcrent policics
by combining DRL and the 1dea of using a behavior
performance map [1]. MMFRL aims to search and store
multiple possible policies which have different behavioral
features while maximizing the expectad reward n advance
in orcer 1o adapt t the anknown environment change. For
example, there are various ways for mulo-legged robots 1o
move ferward: walking, jumping, runmng, side-walking. elc
In this example, only the fastest policy would survive when
using ordinary RL, whercas MMPRL saves all of them as
long as they have different behavioral features. These policics
arc stored into a multi-dimensional discrete map accerding
to 1ts behavioral feature. As a result, adaptation can be done
within reasonable time without re-training the robot, but
just by searching an appropriate pre-traine¢ policy from the
map using an efficiant method like Bavesian optimization,
see Figure 1. We show that, using MMPRL, robots are able
(0 quickly adapt 1o Large changes with hittle kenowledge aboul
what kind of accidents will happen.




Conclusions: Intelligent Trial & Error

Back on its feet

Using an intelligent trial-and-error learning
algorithm this robot adapts to injury in minutes
PAGES 426 & 503

o State of the Art Robot Damage Recovery

- adaptation, more broadly

® Ad a pts i n < 2 m i n u tes :"Z.‘?."’."EEEEE.;TEEEEEEE |

e Combines
+ expensive creativity/power of MAP-Elites (in simulation)

» with data efficiency of Bayesian optimization (in the real world)

 Shows a benefit of QD: learning diverse, high-performing sets of
policies

Intuitions about few, intelligent tests pick one that works
different ways to move Bayesian despite injury

MAP-Elites Optimization found > X% of best




Behavioral Characterization
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Learned Behavioral Characterizations

AURORA, Cully 2019

* (Generate data randomly
* Loop
* Apply dimensionality reduction
* e.g. auto-encoder

e Discretize latent code
e Run MAP-Elites

< '
O
D
=
O
o
-
<

AURORA-AE




Go-Explore

A new approach for hard-exploration problems

Adrien Ecoffet Joost Huizinga Joel Lehman Ken Stanley” Jeff Clune”

37t UBER Al Labs
Vo



Grand Challenge in Deep RL
Effective Exploration

 Hard-exploration problems
e Sparse-reward problems

e rare feedback

 Montezuma’s Revenge

* Deceptive problems

 wrong feedback (wrt global optimum)




Go-Explore

Separates learning a solution into two phases

Phase 1: Explore Until Solved Phase 2: Robustify
(if necessary)

current work: produces neural network
exploits deterministic training, no neural networks robust to stochasticity

ttd e e




Go-Explore: Phase 1 A

 Phase 1: explore until solved

A. choose a state from archive
B. Go back to it B
C. Explore from it

D. add newly found states to archive

* |f better, replace old way of reaching state C

CE

An enhanced version of MAP-Elites




Montezuma’s Revenge Results

Progress in Montezuma's Revenge

18,000,000 Go-Explore (be.st)

* Average score: 660,000

e Best Go-Explore policy
e scores ~18 million

17,900,000

700,000 Go-Explore
*

600,000

e solved 1,141 levels

500,000

e Beats human world record
- 1,219,200

200,000
Feature-EB PPO+CoEX

IMPALA

DDQN
100,000 MP-EB DQN-PixelCNN

Human Expert Gorila DQN-CTS| UBE | Ape-X
cﬂg'Human—v—v—v—v—v—o—v—ﬂ—w—u—O—l

SARSA DON BASS-hash RND
A3C-CTS Rainbow

uel. ba i Note: exploits domain knowledge &
PR ime ofpublication. deterministic training




Pitfall Results

Go-Explore

Domain Knowledge

_ no prior scores > 0
e No Domain Knowledge
Expert Human ¢ WIthOUt:

* fully deterministic test
environment

e or human demonstration

average score: 59,000
max: 107,000
significantly advances

Avg. Human

Prior. DQN DON-CTS P'D?CNI;IN
DQN DDQN IXe
® e o e o

@ ® @
A3C Pop-Art

Rainbow Ape-X IMPALA RND
© e O e @ @
C51 DeepCS

suel. Bop € azc.drd state of the art

2015 2016 2017 2018 2019
Time of publication

0




Go-Explore

Progress in Montezuma's Revenge

° ShOWS value of QD ideas 18,000,000 co-2xpore fhed)

17,900,000

» collecting a diverse repertoire of
high-quality entities

700,000 Go-Explore
&

* Helped solve a previously
unsolved problem

400,000
300,000

200,000
Feature-EB PPO+CoEX

IMPALA

DDQN
100,000 MP-EB DQN-PixelCNN

Human Expert Gorila DQN-CTS| UBE | Ape-X
0 ow—v—v—ro—v—.—v—o—o—n—ﬁ#

SARSA DON BASS-hash RND
A3C-CTS Rainbow
Duel. DQN DeepCS

2013 2014 2015 2016 2017 2018 2019
Time of publication




Future Work: Further Expl

e Learn representations
 Learn world models

e Learn options (e.g. goal/task-

conditioned policies
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Conclusions: Quality Diversity Algorithms

 Generate a set of diverse, high-quality solutions

* Healthy internal dynamics
e collect stepping stones
e goal-switching
 avoids local optima

 harnesses serendipity
* build on innovations via adaptive radiations -
e learn multiple, overlapping curricula B R o -

» Often is the best way even if you only want to
solve one ambitious problem



Related Work: Population Based Training + QD
(Inspired by Arulkumaran et al 2019)

* Population-based training (Jaderberg et al. 2017)

(a) Sequential Optimisation
C

erformance
— E E ] (o ] =
O arameters O—>O O—’O .. O
Wei
(b) Parallel Random/Grid Search (c) Population Based Training
— | — | I— | E—




PB 1 Applications

(a) Qutdoor proccdural maps (b) Indocr procedural maps

= T (d) Thousands of parallel
| |{e) First-person \, CTF games generate
— observations N _AES. experience to train from

that the agents

updates each agent’s

- - respective policy
D (O \(-: C..® (®) e
 — & — (O —r .-
O] \/:gi W - ‘e —

P, 9@~
“® (») r (o’
w' "’ \ /' ") «!z ./
Agent  (f) Population based training provides diverse policies for Population
training games and enzblas internal reward optimisation

(Jaderberg et. al 2018)

PBT-GAN
(Jaderberg et. al 2017)

B Bascline [ AutoAugment B Population Based Augmentation

4

3
g?: . :
S 2
o
@ 1
—

0

WRN-28-10 S-S (26 S-S (26 S-S (26 PyramidNet

2x96D) 2x96D) 2x112D)

(Ho et. al 2019)



AlphaStar: Mastering the Real-Time
Strategy Game StarCraft I

Games have been used for decades as an important way to test and
evaluate the performance of artificial intelligence systems. As
capabilities have increased, the research community has sought
games with increasing complexity that capture different elements of
intelligence required to solve scientific and real-world problems. In
recent years, StarCraft, considered to be one of the most challenging
Real-Time Strategy (RTS) games and one of the longest-played
esports of all time, has emerged by consensus as a “grand

challenge” for Al research.




Population Based Training + QD

Human
Data AlphaStar League

Iteration Iteration Iteration Iteration - .
3 2 3 Reinforcement Learning oo
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Nash
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Learning Agent . Frozen Agent .
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* 5 minutes

Q&A



Beyond QD:
The Grand Challenge

of Open-Endedness

* Divergent search intentionally exposes the
space of the possible

* But in any given domain, what is possible
(at least of any interest), is finite

 Are there algorithms that not only find
what is possible, but also invent endless

new possibilities?
* QD seems close, but not quite there



A Different Kind of Learning

Not how to learn something
But how to learn everything

A human learning to play a video game is
interesting

But the history of human invention is
beyond interesting

Or: natural evolution — the ongoing
creation of all the diversity of life on Earth



, <+ (One run of evolution,
f all life on Earth

(no human
intelligence!)

Thinglink.com



The Tree of Life A

L'ARBRE DuLqu_vEL»\raL’.OLDEL;\VID‘»\ Lm(:ls:‘;u*(; din ‘? Human_level
)77 Y S Intelligence, a tiny
g MPYXY (| }v"':,: moment in an

endless saga

<+— (One run of evolution,
all life on Earth
(no human
intelligence!)

Thinglink.com



‘ The Tree of Llfe ﬁ .

A o o

_e¢ * One run of evolution,
all life on Earth

Endless Surprlse (o human

intelligence!)
(and it keeps on going)

Thinglink.com












Not Like Even the Closest Ideas

* Not like QD
— QD doesn’t invent new problems

* Not like a GAN

— A GAN exposed to billions of flatworms will
never conceive a human

* Not like self-play or coevolution
— AlphaGo will only improve at Go
— There will never be a new game in town

* What kind of algorithm is OE?



The Never-Ending Algorithm

bittbox.com



The Never-Ending Algorithm

bittbox.com



The Never-Ending Algorithm

bittbox.com



The Never-Ending Algorithm

II’ e ‘Il

LT Open Endedness

lllllllllllllllll

The hlstory of human innovation
..of art
..O0f science
..of architecture
efc...




Why don’t we create
open-ended algorithms?




Why don’t we create
open-ended algorithms?

Why only solve problems?




Exception: The OEE Community

* Open-ended evolution (OEE) is a
traditional topic of artificial life
* OEE is the power of creation n E
— Potentially transformative
— Boundless creativity on E 3
demand s Werksnop o cpan-endad voute

— Discoveries beyond the scope
of optimization

« A grand challenge on the scale of
Al; maybe the path to Al itself

— Why so little attention?




Much of the Seminal Work In
Open-Endedness Was In

“Alife Worlds”
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Polyworld (Larry Yaeger 1994-) Chromaria (Lisa Soros & Ken Stanley 2014-) Evosphere (Thomas Miconi 2008



But It Doesn’t Have to Be a
“World”

A “world” is just a conduit to understanding

It doesn’t even have to be a metaphor for
organisms on Earth

— Deep learning can play a role

We are seeking the fundamental

conditions for divergent, creative
processes that never end

They could be applied to anything



The Promise of Open-Endedness

Design of buildings, vehicles, furniture, clothing,
equipment, etc.

Repertoires of controllers for vehicles, robots,
UAVs, spaceships, etc.

Endless generators of art and music

Open-ended video game worlds with the
granularity and originality of ecologies on Earth

Renewed understanding and acceleration of the
orocess of human invention

Human-coupled open-ended systems
ntelligence itself?




Even QD Algorithms Won't
Invent Forever

Important step but...

What happens when the space of the
possible is filled?

What causes new possibilities to arise?
— And forever?

Answer: The system needs to generate
new opportunities and search through
them at the same time

— The key to Earth’s open-ended creativity



So How Will We Achieve Open-
Endedness?

* Any great puzzle leads to surprises
— Expect counter-intuitive insights



Some Interesting Clues in
Artificial Systems

 The Picbreeder experiment
— Showed actual signs of open-endedness
— But with humans in the loop, breeding pictures

« Main idea: Anyone can follow up from anyone else’s
discoveries; no unified goal for the system




Observing Picbreeder.org
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Discoveries by Picbreeder Users
(All are 100% bred: no retouching)




Actually Looks Open-Ended!
(Phylogenies emerging)




What We Discovered: People Only
Find When They Are Not Seeking

"-® (-

Stepping stone to the Teapot Stepping stone to the Butterfly

Stepping stone to the Skull

B0

Stepping stone to Jupiter Stepping stone to the Lamp

The stepping stones almost never resemble the final product!

Moral: You can only find things by not looking for them



Why?
Deception
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(This insight is an inspiration for novelty search)



But without Humans, What Are
the Necessary Conditions?

* What conditions are essential for open-
endedness in general?

— Hypotheses go back to Waddington (1969)
and later Taylor (2012, 2015)

* Drawing on insights from population-based
search, Soros and Staley (2014) propose
our own

— And that the system must generate new
challenges as well as new ways to solve them



Proposed Necessary Conditions
(Soros and Stanley 2014)

1. A non-trivial minimal criterion (MC) to
proliferate

2. Individuals create new novel
opportunities to satisty the MC

3. Individual decide for themselves with
what or whom to interact

4. Ability to increase the size of the
representation (increasing information)



Proposed Necessary Conditions
(Soros and Stanley 2014)

1. A non-trivial minimal criterion (MC) to
proliferate

2. Individuals create new novel
opportunities to satisty the MC

3. Individual decide for themselves with
what or whom to interact « Coevolution,

4. Ability to increase the size of the o 0
representation (increasing information)




Coevolution and Self-Play

* Interaction among learning agents (or
changing components) intrinsically creates
new challenges poponil, Elsne, Antony Buccl, . Paui Wisgand,and Edin D, Ds Jorg,

"Coevolutionary principles." Handbook of natural computing (2012): 987-1033.

* Long studied in the field of coevolution

— Competitive, cooperative, test-based
— Drawing on game theory (Pareto-coevolution)

* More recently called self-play

— OpenAl Five on Dota, AlphaGo and AlphaStar
on Go and Starcraft, etc.



Conditions+Coevolution
Eventually Leads to
Minimal Criterion Coevolution (MCC)
(Brant and Stanley 2017)

» Abstract the necessary conditions outside
of alife worlds

— Minimal criterion, self-generating opportunities

— Leverage two-population coevolution to be
domain-general

 First test: Mazes and maze solvers

Brant, Jonathan C., and Kenneth O. Stanley. "Minimal Criterion Coevolution: A New
Approach to Open-Ended Search.” Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). 2017.



Single Run MCC Results — Mazes
and Solutions of Unbounded
Increasing Complexity

And, most recently, POET...



Open-Endedness:
We're not Finished

* Field is just beginning; many challenges
remain

— Generating endless high-quality, diverse, and
interesting artifacts remains a challenge

— Killer applications remain critical for motivation

— The measurement of success remains
controversial and open

* Open-endedness is the power of creation

— All of living nature is its product in a single run
— When will we harness this power?



A Place to Start

OREILLY" Ideas

 Non-technical
Intro to field
(2017):

https://www.oreilly.com/
ideas/open-endedness-
the-last-grand-challenge-

youve-never-heard-of
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Open-endedness: The last grand challenge
ou've never heard of

a force for discovering intelligence, it could alsc

Vhile open-endedness could b
ymponent of Al itself.

By Kenneth O. Stanley, Joel Lehman, and Lisa Soros. December 19, 2017

Check out the "Impact of Al on Business and Society" sessions at the
Al Conference in San Francisco, September 4-7, 2018. Hurry—best
price ends June 8.

Artificial intelligence (Al) is a grand challenge for
computer science. Lifetimes of effort and billions of

dollars have powered its pursuit. Yet, today its most Pixabay
ambitious vision remains unmet: though progress

continues, no human-competitive general digital

intelligence is within our reach. However, such an elusive



More Thoughts on
Divergent Search

Kenneth 0. Stanley - Joel Lehman

Why Greatness
Cannot Be Planned

pauUR|d 3g JOUUR) SsaLeaIn AYM |®




* Designing training environments is hard, but critical for
progress

 Can machine learning algorithms generate their own training
environments”?



Paired Open-Ended Trailblazer (POET)

Joel Lehman Jeff Clune” Ken Stanley”

*Co-senior authors

2019

Automatically generates both challenges and solutions
Optimizes within niches & harnesses goal switching






direct optimization fails

direct-path curriculum fails






POET

e Quality Diversity++
* seeks the best agent for each niche
* also generates niches
 Open-ended?
* Definitely a step closer
o Currently limited by

* physics simulator
e environmental encoding

* Fully expressive environmental encoding: Generative Teaching

Networks
 |[CML AutoML Workshop this Friday. Petroski-Such et al.



Automatically Generating Environments & Solutions

e Invents a curriculum

 manual attempts fall
e oven very counterintuitive (e.g. harder tasks help solve simpler ones)

 Endlessly innovates
 May be the only way to

* solve ambitious problems
» discover the full gamut of what is possible

o Captures spirit of open-ended engines of innovation

* Natural evolution
» (Cultural evolution (science, technology, art)



Indirect Encoding: Representation
in the Pursuit of Diversity

* When search is divergent...

— The likely trajectories through the space of
designs become important

» Regularities should be possible to
discover, and to preserve

« But regularity should also be flexible and
allow exceptions




Therefore, Indirect Encoding

 Indirect encoding: “Genes” do not map directly to
units of structure in phenotype

 (enetic material can be reused
« Development from DNA as inspiration

Symmetry
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Historical Precedent

* Turing (1952) was interested in
morphogenesis

— Experimented with reaction-diffusion equations
In pattern generation

* Lindenmayer (1968) investigated plant
growth

— Developed L-systems, a grammatical rewrite
system that abstracts how plants develop

Stanley, Kenneth O., and Risto Miikkulainen. "A

) A IO n g h IStO ry Of e n COd I n g S taxonomy for artificial embryogeny." Artificial

Life 9.2 (2003): 93-130.

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts | and Il. Journal of Theoretical
Biology, 18, 280—-299, 300-315.

3
Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37-72.




High-Level Abstraction:
Compositional Pattern Producing
Networks (CPPNSs)

 |E suited to NNs designed to abstract how
embryos are encoded through DNA
(Stanley 2007)
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Symmetry Repetltlon Repetition

Kenneth O. Stanley. . . .
Compositional Pattern Producing Networks: A Novel Abstraction of Development In:

Genetic Programming and Evolvable Machines Special Issue on Developmental Wlth Va rlatlon
Qyveteme Q(2Y 1R1_1R2 Naew Vork NlY: Qnrinaear 2007




Insight: In Embryogeny, Cells Know
Where They Are Through Chemical

Gradients
* Therefore, they know who needs to do
what, and where

e Because where is now defined
 Gradients form a coordinate frame

Zelda and Mrl deTAT)
R R R EER

IR




Gradients Define Axes

« Chemical gradients tell which direction is
which, which axis is which




Higher Coordinate Frames are
Functions of Lower Ones

H_

gv)=17)

Using g and x as a coordinate space, we can get h:

Symmetry from h
a symmetric “ C'[ ( )]
gradient / X y fl/ﬂ’l X g




Gradients Can Be Composed

Symmetric
fuch \

Periodic *

function

N

Segments with
opposite polarities

===
* |s there a general abstraction of
composing gradients that we can evolve?




Gradients Define the Body Plan

Embryo Adult

Gaussian gradient

Vi

Body Segments  left-right gradient
l —

| Anterior
2
=
3 = il
4 =
S ':TD
6 Posterior
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A Novel View:

The Phenotype as a Function of
Cartesian Space

X—»

y»

f -

at X,y

(applied at Tt f
each point
value y :

X

» Coordinate frames are chemical gradients
* Function is applied at all points



Compositional Pattern Producing
Networks (CPPNSs)

output, pattern

(applied at ‘
each poi / @
X—> f - value~y :

y—> at X,y (& =
@S
X <
X Yy
(a) Mapping (b) Composition

* A connected-graph abstraction of the
order of and relationship between
developmental events (no growth!)



Searching Over CPPNs

* Method (for now): NEAT (Neuroevolution
of Augmenting Topologies)
— Evolves NNs of increasing complexity
— Speciation for diversity

* Why evolve CPPNs with NEAT?

— Increasing complexity allows for elaboration
on existing patterns



Interactive Evolution:
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Interactive Evolution:
A Way to Explore Encoding
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Interactive Evolution:
A Way to Explore Encoding
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Interactive Evolution:
A Way to Explore Encoding
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Evolutionary Elaboration with




CPPNs: Repetltlon W|th Varlatlon

« Seen throughout nature

* A simple combination of periodic // \\

and absolute coordinate frames  i.51.0) sin(10x) sin(10y) d
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CPPN Patterns

From http://picbreeder.org

All are 100% evolved: no retouchlnii




The Challenge

 CPPNSs encode spatial patterns with
regularities

* |t would be nice if CPPNs could
represent networks with similar
regularities

« How can CPPNs encode NNs?



The Solution:
Hypercube-based NEAT (HyperNEAT)

Main insight: 2-D connections isomorphic to 4-D points
— Nodes situated in 2 spatial dimensions (x,y)
— Connections expressed with 4 spatial dim. (X;,¥1,X,,Y,)

HyperNEAT extends 2-D CPPNs to 4-D (or 6-D)
— CPPN encodes 4-D patterns (i.e. inside a hypercube)

» 4-D patterns can express the same regularities as 2D patterns
» 4-D patterns interpreted as connectivity patterns

CPPN Output CPPN Output
S)

o}




HyperNEAT

+ 4-D CPPN
— The network evolved by HyperNEAT
* Substrate
— The NN encoded by the 4-D CPPN
— A function of geometry, i.e. sees the geometry
— Each connection is queried by the CPPN to retrieve a

weight
X]’ ylexza y2 fl’ }i fza }f

O O O O O

-1,1 0,1 1, _1__,0.5, 0 _’L 0.5 PPN
© e :/ ______________ (evolved)
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Substrates

e © 0 © ©
© o0 0 o « Can be configured to best
e o0 o o exploit problem geometry
°cee e — Natural for many
© ¢© 0 ¢ O
problems
I * Input, Output, and Hidden
D O '
@@ a @ e nodes ;:tan be placed in
66 o 66 any pa grn
F ¢ @ * Not restricted to 2-D
@@@ Target (x.y.)
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Fundamental Regularities
Produced by 4-D CPPNs

.
b

Symmetry Imperfect Symmetry

Repetition Repetition with Variation



Fundamental Regularities
Produced by 6-D CPPNs

repeat for each node left-right symmetry diagonal symmetry




Resolution Independence

CPPN learns a
connectivity concept,
not individual |
connections

Concepts at 5x5 and |
/X7 nodes

Intuitive expansion of |
the pattern

A novel capability

NN can be scaled to
higher resolutions

5x5




CPPNs “See” Geometry

 The CPPN generates the network as a
function of the substrate geometry

— Instead of building in a mechanism for
processing geometry (e.g. convolution)...

— Build a representation that can discover
the mechanism!

Xl’ Y—) y y

O 0O 0 0 O l l f

-1,1 0,1 ”_1___1__'0.5,0—>1<, 0.5 l =BPN
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Multilayer Sandwich Geometry
(e.g. In Checkers)

o o000 00 o Outputs;
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Inputs: Connection

Coordinates Weights
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Can Contain Multiple “Filters”

A
A/ /

/ /




Geometric Patterns Inside
HyperNEAT Checkers NNs

Influence Maps of more general solutions

O
“

Influence Maps of less general so

We can see
the difference

Jason Gauci and Kenneth O. Stanley (2010). Autonomous Evolution of Topographic Regularities in Artificial Neural Networks. In:
Neural Computation journal 22(7), pages 1860-1898. Cambridge, MA: MIT Press.




Compression and Search

* Why indirect encoding can succeed quickly

— Searches a compressed space (CPPNSs)
* Lower-dimensional
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Regularity iIs Fundamental to
Real World Problems

» Gait generation: far more effective through
CPPN-generated networks

Indirect Direct

View From
Front

input nodes
® hidden nodes
® output nodes

excitatory links
== inhibitory links

View From

Back
Clune J, Stanley KO, Pennock RT, Ofria C (2011)
- : findi k

continuum of regularity IEEE Transactions on
Evolutionary Computation. 15(3): 346-367




CPPN-based NNs Are
Differentiable

* Multiple realizations

— DPPNs (differentiable pattern producing
networks; Fernando et al. 2016)

— Hypernetworks (Ha et al. 2016)

— GENIE (geometrically expressive network for
iIndirect encoding): coming soon with some
surprises about convolution!

* Regularity in visual processing
— e.g. convolution



Regularity is Fundamental to

Real World Problems

« CPPNs/DPPNSs discovered convolution (t
was not built in) ST

« A simple concept: 1 -
w(r w2, y2) = W2 — 21,92 — 1) | 00}
» But can indirect encoding SPRAEL
discover beyond
convolution? w(ra — 21, y2 — y1, 21, y1)
— E.qg. repetition with variation

— Like the
“relaxed weight sharing” in LSTMs generated
by h ype 'n etWO rkS Ha, David & Dai, Andrew & V Le, Quoc. (2017). HyperNetworks. ICLR (2017)

Fer d , Chrisantha, Dylan

Ban M Ic Im Reynolds, Frederic
Bes D vid Pfau, Max Ja d rberg,
Mar L ctot and D n Wierstra
“Convolution by Evolutio

Differenti bI Pattern Pr d ing
Networks.” GECCO (2016).



Alternative CPPN-like

Genome

Y

Map
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Encodings

Fourier Space

é

Inverse
DCT

é

—

Weight Space

7

Koutnik, Jan and Cuccu

Giuseppe and SchmidhL;ber,
Juergen and Gomez, Faustino (2013) Evolving

Large-Scale Neural Networks for Vision-Base
TORCS. In: Foundations of Digital Games,

14-17/05/2013, Chania, Crete.

Weight Matrices

Network

* \Wavelet-based alternative representation
to CPPNs from Koutnik et al. 2013

* Encodes million-conection
NN that learns to drive

d




Interesting Extensions

 Architecture search: describe through CPPN
 Substrate evolution and architecture search: Automate

eve r th I n Felix A. Sosa and Kenneth O. Stanley (2018). Deep
y g HyperNEAT: Evolving the Size and Depth of the Substrate.
Evolutionary Complexity Research Group Undergraduate

- ES HyperN EAT “ Dee p HyperN EAT” ;eézfzgztsfgz%nggiversity of Central Florida Department

Sebastian Risi and Kenneth O.
Stanley (2012)

An Enhanced Hypercube-Based
Encoding for Evolving the
Placement, Density and
Connectivity of Neurons.
Artificial Life journal. Cambridge,
MA: MIT Press, 2012.

Risi, Sebastian, and

« Adaptation: CPPN as a universal learning rule Kennein O. Starey. A

unified approach to
C P P N d |t evolving plasticity and
— —_ - neural geometry." The
(X1 ’ y1 ’ d 19 X2 ’ y2 ’ aZ ) € a_W . 2012 International Joint
Conference on Neural

Universal learning rule! Networks (LIONN)

IEEE, 2012.

— Rules of adaptation themselves can be spread in a pattern



Looking Forward



How will we achieve our most ambitious goals?

* Our ambitious goal: AGI
 How will we get there”?
* Do the lessons from this tutorial help?




Manual Path to Al

 Dominant paradigm in ML
 Phase 1: Identify key building blocks




how many more?

Key BUIIdlng BlocksS”?  hundreds? thousands?

convolution

attention mechanisms

spatial tranformers

batch/layer norm

a learned loss (e.g. evolved policy gradients)
hierarchical RL, options

structural organization (regularity, modularity,
hierarchy)

intrinsic motivation (many different flavors)

auxiliary tasks (predictions, autoencoding,
predicting rewards, etc.)

good initializations (Xavier, MAML, etc.)
catastrophic forgetting solutions

universal value functions

hindsight experience replay

LSTM cell machinery variants

complex optimizers (Adam, RMSprop, etc.)

can we find them all?
Dyna

variance reduction techniques
activation functions

good hyperparameters
capsules

gradient-friendly architectures (skip connections,
highway networks)

value functions, state-value functions,
advantage functions

recurrence (where?)
multi-modal fusion

models

trust regions

Bayesian everything

Active learning

Probabilistic models

Distance metrics (latent codes)
etc.



Manual Path to Al

 Dominant paradigm in ML
 Phase 1: Identify key building blocks

* Phase 2: Combine building blocks into
complex thinking machine

e Herculean task
* |s it possible?




Overall Machine Learning Trend: Learn the Solution

e Features
- HOG/SIFT =% Deep Learning

* Architectures
+ Hand desighed —9 Learned

 Hyperparameters & data augmentation
» Manually tuned —» Learned

 RL algorithms
- Hand designed —p Meta-learning

suggests alternate path



Al-Generating Algorithms

Clune 2019

Learn as much as possible
Bootstrap from simple to AGI

Expensive outer loop

* produces a sample-efficient,
intelligent agent for inner loop

We know It works
e occurred on Earth




Al-Generating Algorithms

Clune 2019

Three Pillars
1. Meta-learn architectures
2. Meta-learn learning algorithms

3. Generate effective learning
environments




Al-Generating Algorithms

Clune 2019

* [hree Pillars
1. Meta-learn architectures
2. Meta-learn learning algorithms Open-Ended Search

3. Generate effective learning Quality Diversity
environments

Indirect Encoding




Al-Generating Algorithms
Clune 2019
* Three Pillars
1. Meta-learn architectures
2. Meta-learn learning algorithms Open-Ended Search

3. Generate effective learning Quality Diversity
environments

Indirect Encoding



Al-Generating Algorithms

Clune 2019

 May be fastest path to AGI

* Interesting even If not

* how simple processes to bootstrap
iInto intelligence

* necessary, sufficient, catalyzing factors

e understand our origins

* likelihood of such processes
occurring elsewhere in the universe

 Grand challenge of CS



Conclusions



Novelty Search
Quality Diversity
Open-Ended Search
Indirect Encoding

Conclusions
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* Interesting, powerful ideas W
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* help solve previously unsolvable problems

* Introduce entirely new types of problems

 Grand challenges
* Open-ended algorithms

* Al-generating algorithms




Conclusions

 Whether descendant or convergent, lots of these ideas are being
hybridized with machine learning to great effect

 HER, DIAYN, Go-Explore, PBT/AlphaStar, HyperNetworks, etc.

e Potential for lots more!
 How might these ideas help with your techniques?

 Might help us achieve our most ambitious research goals




Recommended Reading

PDFs available on our websites

Stanley KO, Clune J, Lehman J, Miikkulainen R (2019) Designing Neural Networks through Neuroevolution. Nature
Machine Intelligence, 1:1, 24-35.

 Reviews most of the concepts in the tutorial and provides cites to the original papers, including: Novelty Search,
Novelty Search with Local Competition, MAP-Elites, Intelligent Intelligent Trial & Error, Evolutionary Strategies +
Novelty Search, Quality Diversity, Innovation Engines, CMOEA, NEAT, CPPNs, HyperNEATI, Indirect Encoding,
Minimal criterion coevolution

Open-endedness: The last grand challenge you’ve never heard of. Stanley, Lehman, Soros. 2017. https://
www.oreilly.com/ideas/open-endedness-the-last-grand-challenge-youve-never-heard-of

Al-GAs: Al-generating algorithms, an alternate paradigm for producing general artificial intelligence. (2019) Clune.
https://arxiv.org/abs/1905.10985

Ecoffet A, Huizinga J, Lehman J, Stanley KO, Clune J (2019) Go-Explore: a New Approach for Hard-Exploration
Problems. arXiv 1901.10995.

Wang R, Lehman J, Clune J, Stanley KO (2019) Paired Open-Ended Trailblazer (POET): Endlessly Generating
Increasingly Complex and Diverse Learning Environments and Their Solutions. arXiv 1901.01753.

Autonomous skill discovery with Quality-Diversity and Unsupervised Descriptors. Cully 2019. arXiv:1905.11874, 2019
Why Greatness Cannot Be Planned. Stanley & Lehman. 2015.
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