Senior Research Manager

Endlessly Generating Increasingly Complex and Diverse Learning **Environments and their Solutions through the Paired Open-Ended** Trailblazer (POET)

eff Clune

Harris Associate Professor, Computer Science

 If you try too hard to solve a hard problem, you'll fail If you ignore the objective, you're more likely to succeed

A Paradox

Maximize Reward: Fails Maximize Novelty: Succeeds Novelty Search: Lehman & Stanley

Key for Science & Technological Innovation: Generating Problems, Goal Switching

Conjecture: The only way to solve hard problems may be by creating problems while you solve them and goal switching between them

When trying to solve task A, if you make progress on task B also start optimizing for B

"Goal Switching" Nguyen, Yosinski & Clune 2016

Quality Diversity Algorithms

a diverse set of high-performing agents (policies)

Lehman & Stanley 2011 Mouret & Clune 2015 Pugh et al. 2016

Choose dimensions of interest, discretize them Search for highest-performing policy in each cell

Set of diverse, high-quality solutions

Qualitatively Different Mouret & Clune 2015, arXiv

Classic Optimization

soft robots problem

Classic + Diversity

MAP-Elites

same # evals!

Often finds a better max than max-focused algorithms!

50	
45	
40	
35	
30	
25	
20	
15	
10	
05	
00	

Goal Switching is Critical

retina problem

color = reward

MAP-Elites Lineages of a Few Final Solutions

Circles are iteration 0, color = reward

Innovation Engines Nguyen, Yosinski & Clune 2015

- Nature, Culture, & QD algorithms are Innovation Engines
 - generate permutations of previous interesting things
 - if interesting, keep them
 - repeat

ns are Innovation Engines s interesting things

Innovation Engines Nguyen, Yosinski & Clune 2015

Collector & Generator

MAP-Elites one bin per ImageNet class

Encodings: Small CPPN networks

Interesting-ness Evaluator

AlexNet

Goal Switching

Nguyen, Yosinski & Clune 2015

Goal Switching

Many-class MAP-Elites vs. One-class MAP-Elites

Nguyen, Yosinski & Clune 2015

Goal Switching

Nguyen, Yosinski & Clune 2015

Goal Switching Enables Good Ideas to Spread

- Fundamental advances spread to other problems/niches Then are built upon to solve that specific problem
- "Adaptive Radiations"

Adaptive Radiations in QD!

Innovation Engines Nguyen, Yosinski & Clune 2015

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

Back on its feet Using an intelligent trial-and-error learning algorithm this robot adapts to injury in minutes

PAGES 426 & 503

Robots that adapt like animals

2015

State and state and state and

UPMC Université France

Jeff Clune University of Wyoming

Danesh Tarapore UPMC Université France

Go-Explore: Solves Montezuma's Revenge

Ecoffet, Huizinga, Lehman, Stanley, & Clune 2019, arXiv

- Average score: 660,000
- Best Go-Explore policy
 - scores ~18 million
 - solved 1,141 levels
- Beats human world record
 - 1,219,200

Caveat: Exploits deterministic training

What's missing?

- QD algorithms
 - a diverse set of high-performing agents (policies)
 - goal-switching
 - conduct divergent search: find out what is possible within an environment
- But their ability to innovate is constrained
 - stuck in a single environment

MAP-Elites

50	
45	
40	
35	
30	
25	
20	
15	
10	
05	
00	

Open-Ended Algorithms

- Endlessly innovate
- Examples
 - Natural evolution
 - Human culture (science, technology, art)
- Can we make algorithms that do this?

Traditional ML

We pick challenges and solve them

Starcraft

Dota 2

Intriguing Possibility

- Could the algorithm generate its own challenges and solve them?
 - niche/challenge/opportunity/problem:
 - tree leaves
 - solution:
 - giraffes

Interesting after a billion years?

caterpillars

Paired Open-Ended Trailblazer (POET)

Rui Wang

Joel Lehman

*Co-senior authors

Endlessly Generating Increasingly Complex and **Diverse Learning Environments and their Solutions**

Jeff Clune*

Ken Stanley*

GECCO 2019

Periodically

- Generate new learning environments
 - add to population IF
 - not too easy, not too hard ightarrow
 - novel
- Optimize agents to better solve each one
 - allow goal-switching

POET

Task: Obstacle Courses

- Reduce torque Balance hull

- 4 motors
- 10 LIDAR Sensors
- 14 other proprioceptive state variables

Step	Step	ROUGHNES
Height	NUMBER	

POET

Methods

- 3-layer neural network optimized with ES (Salimans et al. 2017) but any RL algorithm would work
- easy to distribute
- code: <u>https://github.com/uber-research/poet</u>

Another Challenging Environment

Extremely Challenging

Very Challenging

Challenging

Direct Optimization Fails

Direct Path Curriculum

For each extremely challenging environment

Direct Path Curriculum

- For each extremely challenging environment
- Create intuitive curriculum (Bengio et al. 2009, Gomez et al. 1997, Karpathy et al. 2012)

Direct Path Curriculum Fails

Goal Switching Needed to Solve the Hardest Challenges

Work Related to Learning Curricula

- - Open-endedness
 - Procedural content generation
 - Quality diversity
 - Developmental robotics
 - Co-evolution/self-play
 - GANS
 - Minimal criterion co-evolution
 - Direct curriculum learning methods

See our paper for a full list + references https://arxiv.org/abs/1901.01753

More complex environments (including encoding)

Heess et al. 2017

More complex environments (including encoding)

Bansal et al. 2017

"Assassin's Creed Odyssey" (2018) Ubisoft

Optimize body

David Ha 2018

Cheney, MacCurdy, Clune, Lipson 2013

Future Work

- Generate reward function too
- More compute
 - skills, innovation, etc.
- Meta-Learning
 - requires distribution of tasks
 - requires humans to generate it (and do a good job)
 - could use POET-generated tasks instead

wonderful property: more compute = more discoveries, complexity,

Al-Generating Algorithms Clune 2019

Three Pillars

- 1. Meta-learn architectures
- 2. Meta-learn learning algorithms
- 3. Generate effective learning environments

Al-Generating Algorithms Clune 2019

- Learn as much as possible
- Bootstrap from simple to AGI
- Expensive outer loop
 - produces a sample-efficient, intelligent agent for inner loop
- We know it works
 - occurred on Earth

Automatically Generating Environments & Solutions POET: Wang, Lehman, Clune, & Stanley 2019

- Invent effective curricula
 - key ingredients: create & collect stepping stones, harness goal switching
 - curricula are often very counterintuitive (e.g. harder tasks help solve simpler ones)
 - explains why goal-oriented attempts fail
 - hedges bets with multiple, overlapping curricula
- Endlessly innovates
- May be the only way to
 - solve ambitious problems
 - discover the full gamut of what is possible
- Captures spirit of open-ended innovation engines
 - Natural evolution, Cultural evolution (science, technology, art)
- Opens many exciting future research directions

For more, watch our ICML **2019 Tutorial on Population-Based Methods** https://youtu.be/g6HiuEnbwJE

Paired Open-Ended Trailblazer (POET)

Rui Wang

Joel Lehman

Thanks!

Jeff Clune*

Ken Stanley*

*Co-senior authors

Automatically Generating Environments & Solutions POET: Wang, Lehman, Clune, & Stanley 2019

- Invent effective curricula
 - key ingredients: create & collect stepping stones, harness goal switching
 - curricula are often very counterintuitive (e.g. harder tasks help solve simpler ones)
 - explains why goal-oriented attempts fail
 - hedges bets with multiple, overlapping curricula
- Endlessly innovates
- May be the only way to
 - solve ambitious problems
 - discover the full gamut of what is possible
- Captures spirit of open-ended innovation engines
 - Natural evolution, Cultural evolution (science, technology, art)
- Opens many exciting future research directions

For more, watch our ICML **2019 Tutorial on Population-Based Methods** https://youtu.be/g6HiuEnbwJE

