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A Paradox

* If you try too hard to solve a hard problem, you’ll fall
* [f you ignore the objective, you're more likely to succeed

Distance Novelty

Maximize Reward: Fails
Maximize Novelty: Succeeds



Key for Science & Technological Innovation:
Generating Problems, Goal Switching

Kenneth O. Stanley - Joel Lehman

Why Greatness
Cannot Be Planned
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Conjecture: The only way to solve hard problems may be by creating
problems while you solve them and goal switching between them



“Goal Switching”

Nguyen, Yosinski & Clune 2016

* When trying to solve task A, if you make progress on task B
e also start optimizing for B




Quality Diversity Algorithms

e a diverse set of high-performing agents (policies)

Lehman & Stanley 2011
Mouret & Clune 2015
Pugh et al. 2016



MAP-Elites

Mouret & Clune 2015, arXiv

e Choose dimensions of interest, discretize them

e Search for highest-performing policy in each cell
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Qualitatively Different

Mouret & Clune 2015, arXiv

soft robots problem

Classic Optimization Classic + Diversity MAP-Elites
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same # evals!

Often finds a better max than max-focused algorithms!



Goal Switching is Critical

retina problem color = reward



MAP-Elites Lineages of a Few Final Solutions
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Circles are iteration O, color = reward




Innovation Engines

Nguyen, Yosinski & Clune 2015

Interesting? 9 Interesting? 9 Interesting?

* Nature, Culture, & QD algorithms are Innovation Engines
e generate permutations of previous interesting things
e |f Interesting, keep them
e repeat



Innovation Engines

Nguyen, Yosinski & Clune 2015
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Interesting-ness

Evaluator

Collector &
Generator

MAP-Elites

one bin per ImageNet class AlexNet

Encodings: Small CPPN networks



Goal Switching
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Nguyen, Yosinski & Clune 2015



Goal Switching

 Many-class MAP-Elites vs. One-class MAP-Elites
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Nguyen, Yosinski & Clune 2015



Goal Switching
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Goal Switching Enables Good Ideas to Spread

 Fundamental advances spread to other problems/niches
* Then are built upon to solve that specific problem
e “Adaptive Radiations”
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Adaptive Radiations

in QD!

castle cloak space shuttle boathouse
4% 739 26% 724 81% 738 10% 707

volcano mosque cocker street sign church planetarium
99% 972 14%919 spaniel 29 918 32% 1697 49% 838 85% 879
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Innovation Engines
yoleano mosde water tower beacon s . P Sbelsk S Nguyen, Yosinski & Clune 2015




THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

Back on its feet

Using an intelligent trial-and-error learning
algorithm this robot adapts to injury in minutes
PAGES 426 & 503
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Go-Explore: Solves Montezuma’s Revenge

Ecoffet, Huizinga, Lehman, Stanley, & Clune 2019, arXiv

Progress in Montezuma's Revenge

18,000,000 Go-Explore (best) ® Average SCore. 660,000

oo 1] * Best Go-Explore policy
S + scores ~18 million

| e solved 1,141 levels

* Beats human world record
. 1,219,200

200,000

Feature-EB PPO+CoEX
IMPALA

DDQN

100,000 MP-EB DQN-PixelCNN

Human Expert Gorila DQN-CTS| UBE | Ape-X
Avg. Human n
SARSA DQN BASS-hash RND
A3C-CTS Rainbow

Duel. DQN DeepCS

1]

2013 2014 2015 2016 2017 2018 2019 . — —
Time of publication Caveat: Exploits deterministic training




What’s missing?

e QD algorithms

* a diverse set of high-performing agents
(policies)

MAP-Elites

e goal-switching

e conduct divergent search: find out what is
possible within an environment

0.0 0.1 0.2 0.3 0.4 0.5 0.6

* But their ability to innovate is
constrained

» stuck in a single environment
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The Tree of Life

Open-Ended Algorithms

* Endlessly innovate

e Examples

e Natural evolution
 Human culture (science, technology, art)

 Can we make algorithms that do this?




Traditional ML

* \We pick challenges and solve them

Starcraft




The Tree of Life

’ -

Intriguing Possibility

* Could the algorithm generate its
own challenges and solve them?

* niche/challenge/opportunity/problem:

e tree leaves

* solution: Interesting after a
e giraffes billion years?
o caterpillars




Paired Open-Ended Trailblazer (POET)

Joel Lehman Jeff Clune” Ken Stanley*

*Co-senior authors

GECCO 2019

Endlessly Generating Increasingly Complex and
Diverse Learning Environments and their Solutions



POET

* Periodically

* (Generate new learning environments
* add to population IF

* not too easy, not too hard

e novel

* Optimize agents to better solve each one
e allow goal-switching



Task: Obstacle Courses

aVRER] e 4 motors
Don’t fall e 10 LIDAR Sensors

Reduce torque  * 14 other proprioceptive
Balance hull state variables

STUMP GAP STEP STEP

ROUGHNESS
HEIGHT WIDTH HEIGHT NUMBER







Methods

* 3-layer neural network optimized with ES
* but any RL algorithm would work

e easy to distribute
e code: https://github.com/uber-research/poet



https://github.com/uber-research/poet

€ starts offf @asYeo







Another Challenging Environment
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Direct Optimization Fails

Large Rough High Down- Hybrid
Gap Surface  Stump stairs Obstacles

(Fig. 2a) (Fig.2b) (Fig.2c) (Fig. 3a) (Fig. 3b)




Direct Path Curriculum

* For each extremely challenging environment
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Direct Path Curriculum

* For each extremely challenging environment
e Create intuitive curriculum (Bengio et al. 2009, Gomez et al. 1997, Karpathy et al. 2012)




Direct Path Curriculum Falls
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Goal Switching Needed to Solve the Hardest
Challenges

Bl Challenging

very
Challenging

Extremely

— Challenging

4
-
Q
O
—
Q

Q.

POET w/o Transfer POET



Work Related to Learning Curricula

e See our paper for a full list + references
 Open-endedness
* Procedural content generation
e Quality diversity
* Developmental robotics
e Co-evolution/self-play
* GANSs
 Minimal criterion co-evolution
* Direct curriculum learning methods



Future VVork



More complex environments (including encoding)

Heess et al. 2017



More complex environments (including encoding)

"ch and Defend"

Goal: red agent — move ball through net; green agent — defend

Bansal et al. 2017






Optimize body

Cheney, MacCurdy, Clune, Lipson 2013




Future Work

e Generate reward function too

 More compute

» wonderful property: more compute = more discoveries, complexity,
skills, iInnovation, etc.

 Meta-Learning
* requires distribution of tasks
* requires humans to generate it (and do a good job)
* could use POET-generated tasks instead




Al-Generating Algorithms

Clune 2019

Three Pillars
1. Meta-learn architectures
2. Meta-learn learning algorithms

3. Generate effective learning
environments




Al-Generating Algorithms

Clune 2019

Learn as much as possible
Bootstrap from simple to AGI

Expensive outer loop

* produces a sample-efficient,
intelligent agent for inner loop

We know It works
e occurred on Earth




Automatically Generating Environments & Solutions

POET: Wang, Lehman, Clune, & Stanley 2019
* |nvent effective curricula

* key ingredients: create & collect stepping stones, harness goal switching

e curricula are often very counterintuitive (e.g. harder tasks help solve simpler ones)
 explains why goal-oriented attempts fail

* hedges bets with multiple, overlapping curricula

* Endlessly innovates For more, watch our ICML

« May be the only way to 2019 Tutorial on Population-
Based Methods

https.//youtu.be/g6HIUENbWJE

* solve ambitious problems

» discover the full gamut of what is possible

o Captures spirit of open-ended innovation engines

* Natural evolution, Cultural evolution (science, technology, art)

 Opens many exciting future research directions


https://youtu.be/g6HiuEnbwJE

Thanks!

Paired Open-Ended Trailblazer (POET)

Joel Lehman Jeff Clune* Ken Stanley*

*Co-senior authors

UNIVERSITY
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Automatically Generating Environments & Solutions

POET: Wang, Lehman, Clune, & Stanley 2019
* |nvent effective curricula

* key ingredients: create & collect stepping stones, harness goal switching

e curricula are often very counterintuitive (e.g. harder tasks help solve simpler ones)
 explains why goal-oriented attempts fail

* hedges bets with multiple, overlapping curricula

* Endlessly innovates For more, watch our ICML

« May be the only way to 2019 Tutorial on Population-
Based Methods

https.//youtu.be/g6HIUENbWJE

* solve ambitious problems

» discover the full gamut of what is possible

o Captures spirit of open-ended innovation engines

* Natural evolution, Cultural evolution (science, technology, art)

 Opens many exciting future research directions
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