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A Paradox
• If you try too hard to solve a hard problem, you’ll fail

• If you ignore the objective, you’re more likely to succeed

Maximize Reward: Fails 
Maximize Novelty: Succeeds

Novelty Search: Lehman & Stanley



Key for Science & Technological Innovation: 
Generating Problems, Goal Switching

Conjecture: The only way to solve hard problems may be by creating 
problems while you solve them and goal switching between them



“Goal Switching”

• When trying to solve task A, if you make progress on task B

• also start optimizing for B

Nguyen, Yosinski & Clune 2016



Quality Diversity Algorithms

• a diverse set of high-performing agents (policies)

Lehman & Stanley 2011

Mouret & Clune 2015


Pugh et al. 2016
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• Choose dimensions of interest, discretize them 

• Search for highest-performing policy in each cell



MAP-ElitesClassic + Diversity

Qualitatively Different
Mouret & Clune 2015, arXiv
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Often finds a better max than max-focused algorithms!

soft robots problem



Goal Switching is Critical

retina problem color = reward



MAP-Elites Lineages of a Few Final Solutions

Circles are iteration 0, color = reward



• Nature, Culture, & QD algorithms are Innovation Engines

• generate permutations of previous interesting things

• if interesting, keep them

• repeat

Innovation Engines
Nguyen, Yosinski & Clune 2015



Innovation Engines

Collector &  
Generator

Interesting-ness 
Evaluator

MAP-Elites 
one bin per ImageNet class 

Encodings: Small CPPN networks
AlexNet

Nguyen, Yosinski & Clune 2015



Nguyen, Yosinski & Clune 2015

Goal Switching



Goal Switching

• Many-class MAP-Elites vs. One-class MAP-Elites

Nguyen, Yosinski & Clune 2015
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Nguyen, Yosinski & Clune 2015
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Goal Switching Enables Good Ideas to Spread

• Fundamental advances spread to other problems/niches

• Then are built upon to solve that specific problem

• “Adaptive Radiations”



Adaptive Radiations 
in QD!

Nguyen, Yosinski & Clune 2015
Innovation Engines
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• Average score: 660,000

• Best Go-Explore policy

• scores ~18 million

• solved 1,141 levels


• Beats human world record

• 1,219,200

Go-Explore: Solves Montezuma’s Revenge
Ecoffet, Huizinga, Lehman, Stanley, & Clune 2019, arXiv

Caveat: Exploits deterministic training



What’s missing?

• QD algorithms

• a diverse set of high-performing agents 

(policies)

• goal-switching

• conduct divergent search: find out what is 

possible within an environment


• But their ability to innovate is 
constrained

• stuck in a single environment

MAP-Elites



Open-Ended Algorithms

• Endlessly innovate

• Examples

• Natural evolution

• Human culture (science, technology, art)


• Can we make algorithms that do this?



Traditional ML

• We pick challenges and solve them

Starcraft Dota 2



Intriguing Possibility

• Could the algorithm generate its 
own challenges and solve them?

• niche/challenge/opportunity/problem:

• tree leaves


• solution:

• giraffes 

• caterpillars

Interesting after a 
billion years?



Paired Open-Ended Trailblazer (POET)

Endlessly Generating Increasingly Complex and 
Diverse Learning Environments and their Solutions

Rui WangRui Wang

GECCO 2019



POET

• Periodically

• Generate new learning environments

• add to population IF


• not too easy, not too hard

• novel


• Optimize agents to better solve each one

• allow goal-switching



Task: Obstacle Courses

• Run fast

• Don’t fall

• Reduce torque

• Balance hull


• 4 motors

• 10 LIDAR sensors

• 14 other proprioceptive 

state variables
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Methods

• 3-layer neural network optimized with ES (Salimans et al. 2017)

• but any RL algorithm would work


• easy to distribute

• code: https://github.com/uber-research/poet

https://github.com/uber-research/poet






Another Challenging Environment





Direct Optimization Fails



Direct Path Curriculum

• For each extremely challenging environment
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Direct Path Curriculum

• For each extremely challenging environment

• Create intuitive curriculum (Bengio et al. 2009, Gomez et al. 1997, Karpathy et al. 2012)

easy ϕ1
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medium 
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Direct Path Curriculum Fails
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Goal Switching is Essential
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Goal Switching Needed to Solve the Hardest 
Challenges



Work Related to Learning Curricula

• See our paper for a full list + references https://arxiv.org/abs/1901.01753

• Open-endedness

• Procedural content generation

• Quality diversity

• Developmental robotics

• Co-evolution/self-play

• GANs

• Minimal criterion co-evolution

• Direct curriculum learning methods



Future Work



More complex environments (including encoding)

Heess et al. 2017



More complex environments (including encoding)

Bansal et al. 2017



Future Work

• More complex environments (including encoding)



Optimize body

David Ha 2018

Cheney, MacCurdy, Clune, Lipson 2013



Future Work

• Generate reward function too

• More compute

• wonderful property: more compute = more discoveries, complexity, 

skills, innovation, etc. 

• Meta-Learning

• requires distribution of tasks

• requires humans to generate it (and do a good job)

• could use POET-generated tasks instead



AI-Generating Algorithms

Three Pillars

1. Meta-learn architectures

2. Meta-learn learning algorithms

3. Generate effective learning 

environments

Clune 2019



AI-Generating Algorithms

• Learn as much as possible

• Bootstrap from simple to AGI

• Expensive outer loop

• produces a sample-efficient, 

intelligent agent for inner loop

• We know it works

• occurred on Earth

Clune 2019



Automatically Generating Environments & Solutions
• Invent effective curricula

• key ingredients: create & collect stepping stones, harness goal switching

• curricula are often very counterintuitive (e.g. harder tasks help solve simpler ones)

• explains why goal-oriented attempts fail


• hedges bets with multiple, overlapping curricula


• Endlessly innovates

• May be the only way to

• solve ambitious problems

• discover the full gamut of what is possible


• Captures spirit of open-ended innovation engines

• Natural evolution, Cultural evolution (science, technology, art)


• Opens many exciting future research directions

For more, watch our ICML 
2019 Tutorial on Population-

Based Methods

https://youtu.be/g6HiuEnbwJE

POET: Wang, Lehman, Clune, & Stanley 2019

https://youtu.be/g6HiuEnbwJE


Rui WangRui Wang

Paired Open-Ended Trailblazer (POET)

Thanks!
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