
Encouraging Creative Thinking in Robots Improves Their

Ability to Solve Challenging Problems

Jingyu Li
Evolving AI Lab

Computer Science Dept.
University of Wyoming
Laramie High School

jingyuli@mit.edu

Jed Storie
Evolving AI Lab

Computer Science Dept.
University of Wyoming
jed.storie@gmail.com

Jeff Clune
Evolving AI Lab

Computer Science Dept.
University of Wyoming
jeffclune@uwyo.edu

ABSTRACT
Evolutionary algorithms frequently get stuck on local
optima–and fail to find the global optimum–when local gra-
dients do not point the search process toward the direction
of the global optimum. A recent breakthrough called Nov-
elty Search ameliorates this problem by enabling the search
process to explore in every direction by encouraging the pro-
duction of novel, or not-yet-seen, phenotypes (e.g. new robot
behaviors). However, a problem with Novelty Search is that
it can get lost on “novelty plateaus” wherein novel behav-
iors in o↵spring are not immediately produced by mutation
and crossover (e.g. when a sequence of specific mutations
is required to produce new behaviors, but the intermedi-
ate mutations are not rewarded because they do not pro-
duce novel behaviors). In such cases, Novelty Search and
related approaches that reward behavioral diversity can get
stuck. Here we introduce a new approach, borrowed from
human psychology, that mitigates this problem: encourag-
ing creative thinking. In addition to rewarding novel behav-
ior, we encourage evolving neural networks to “think di↵er-
ently” by rewarding not-yet-seen firing patterns in hidden
neurons, which we call the “Creative Thinking Approach.”
We hypothesize that encouraging novel thinking can reward
stepping stones toward new behaviors. On a variety of chal-
lenging robotic control problems from previous publications
we demonstrate that, as problem di�culty increases, adding
the Creative Thinking Approach increasingly improves per-
formance over simply encouraging novel behaviors. Our re-
sults suggest that the Creative Thinking Approach could
help improve the scale and complexity of problems that can
be solved by evolutionary algorithms.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Com-
puting Methodologies:Artificial Intelligence
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1. MOTIVATION
Traditional Evolutionary Algorithms (EAs) have fitness

functions that reward organisms more the closer they are
to (or the higher they perform on) an objective. EAs often
get stuck on local fitness optima, which are regions of high
fitness surrounded by regions of low fitness. In such situ-
ations, the fitness gradient does not point in the direction
that needs to be traversed to find the global optima, prevent-
ing further improvements in fitness [8]. In these deceptive
problems, being unwilling to explore areas of low fitness pre-
vents evolution from reaching its goal. Take the example of
a Chinese finger trap. If we took fitness as maximizing dis-
tance between the two fingers, higher fitnesses are achieved
by pulling, which is a counter-productive strategy that only
more tightly traps the fingers. Instead, one has to first push
together the fingers–temporarily lowering fitness–before es-
caping the trap [14]. The same is true for many problems:
individuals must first move away from high fitness areas in
order to reach the global goal [14]. It is thus helpful to re-
ward stepping stones on the path toward desired solutions,
which may not be in the direction of the final goal as judged
by the fitness function; such stepping stones are often not
rewarded by objective-based fitness functions [13, 14].

One approach is to reward stepping stones in deceptive
problems by adding helper-objectives that are not directly
related to performance, but that guide evolution to produce
potentially useful behaviors. For example, it has been shown
that adding objectives to promote behavioral consistency
(i.e. encouraging similar behavior to be performed in the
presence of noise) or reactivity (i.e. performing di↵erent be-
haviors in di↵erent scenarios) can increase performance [21,
15].

Most previous techniques for preventing premature con-
vergence on local optima focus on increasing genomic diver-
sity [26, 20, 24, 8]. In recent years, researchers have shifted
toward rewarding diversity in the space of behaviors, such
as by adding a behavioral diversity objective to a multi-
objective algorithm [18, 6, 17]. A more extreme version of
this idea is Novelty Search, which rewards only behavioral
novelty and ignores the objective entirely [13, 14]. Both ap-
proaches substantially help EAs avoid getting trapped on
local optima and often outperform EAs with genomic-based
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diversity metrics or no diversity pressure at all [18, 6, 17,
13, 14].

Algorithms that reward behavioral diversity or novelty re-
quire a behavioral distance function that quantifies how dif-
ferent the behaviors of two organisms are. Examples from
previous work include the final location of a robot or its
trajectory over time [13, 14, 17]. The specific behavioral
distance function chosen makes a significant di↵erence, plac-
ing a burden on the user to not only pick a behavioral dis-
tance function, but to pick a good one. Recent research
has focused on creating behavioral distance functions that
are generally applicable to many di↵erent problems, such as
concatenating the entire sequence of inputs to and outputs
from a neural network controller and then comparing this
sequence to that of another robot [6, 17]. Modern comput-
ers and e�cient algorithms enable comparisons even in such
high-dimensional spaces, and the approach has been shown
to work as well as human-designed custom behavioral dis-
tance functions [18, 6, 17].

All approaches that encourage behavioral diversity will
have a problem if mutations to the current population do
not produce novel behaviors. We call this phenomenon a
novelty plateau. After a prolonged search for novel behav-
iors, it would not be surprising if the population reached a
point wherein the creation of new behaviors required more
than one mutation. One can imagine, for example, a situ-
ation in which five specific mutations would be required to
produce a new behavior, but in which none of the interme-
diate mutations cause the behavior. In this situation, there
is no selection gradient towards having all five mutations,
since having four of the five is no better than having none
of the five. Such novelty plateaus may significantly hurt the
performance of EAs that encourage behavioral diversity, al-
though the extent to which they do so is currently unknown.
Of course, neutral genetic drift could lead the search out
of a novelty plateau, just as drift could lead a population
out of a fitness plateau [11, 23], but drift requires luck in
exponentially increasing amounts as the number of specific
mutations required to exit the plateau grows. For the same
reason you may want to encourage behavioral diversity in
objective-based search when there is no helpful gradient to-
ward the objective, it could also be helpful to encourage
thought diversity in behavior-based search when there is no
behavioral diversity gradient. As seen in psychology, being
stuck on a problem is a result of being locked into a certain
way of thinking and thus new and creative thinking plays a
large factor in getting unstuck on problems [22].

2. METHODS

2.1 The Creative Thinking Approach
To test the idea of encouraging thought diversity, we in-

troduce the Creative Thinking Approach (CTA), which en-
courages robots to “think di↵erently” than robots that have
come before in the same run. Of course, suggesting that
robots controlled by neural networks “think” at all is contro-
versial: we only use the term“think”metaphorically. To the
extent that neural networks do think in the most loose sense
of the word, in that they perform computations to process
inputs and generate outputs, our algorithm encourages them
to think di↵erently. In less metaphorical and more technical
language, rewarding “creative thinking” simply means re-
warding novel patterns of neural firing. In a nutshell, then,

our algorithm rewards novel thoughts in addition to novel
behaviors.

Technically, our work is an extension of the general be-
havioral diversity mechanism from Doncieux and Mouret [6,
17]. For the general behavioral diversity mechanism, over
the course of a robot evaluation, all of the robot’s inputs
and outputs from each time step (or a sub-sample of time
steps) are stored in a binary vector to represent the behav-
ior of the individual (values > 0 are stored as 1, otherwise
0). This method is general because a user does not have to
design a problem-specific behavioral characterization (such
as the number of doors opened): the method will provide
a behavioral metric and distance function for any problem
in which a robot has inputs and outputs. The behavioral
distance between two organisms is the Hamming distance
between their binary vectors, which is computationally e�-
cient to calculate with modern algorithms. The Hamming
distance is the number of bits that di↵er between two binary
sequences. This behavioral distance factors into a behav-
ioral diversity objective in the NSGA-II multi-objective al-
gorithm [4]: the other objective is performance on the task.
Briefly, multi-objective algorithms seek to improve perfor-
mance on all objectives in a way that maintains a diverse
set of solutions that perform well to varying degrees on all
objectives. For a review of multi-objective algorithms, the
reader is directed to [5, 3].

In this paper, the general behavioral diversity mechanism
just described [6, 17] is compared to the Creative Thinking
Approach. Because that general behavioral diversity mech-
anism looks only at behavior (characterized by input and
output values) [6, 17], we refer to this control as the behav-
ioral diversity only (BDO) treatment.

To implement the Creative Thinking Approach, we ex-
tend the BDO method by adding the firing patterns of the
hidden neurons to the binary vector describing the robot’s
behaviors (Figure 1). Note that the CTA is a superset of
the BDO, in that it includes the behaviors (characterized
by inputs and outputs) and adds to that a consideration
of the firing patterns of hidden neurons. Thus, two robots
that have identical inputs and outputs, but have di↵erent
neural firing patterns, will be recognized as being di↵erent
and thus rewarded. While technically a small change, there
are consequences to consider. By adding hidden neurons, the
computational cost of calculating the di↵erence between two
organisms increases. In our problems, this additional cost
is minor compared to the cost of running the simulation to
evaluate organisms, although it could become an issue for
faster problem domains or larger neural networks. For the
problems in this paper, we did not notice that the CTA
ran slower than BDO. An additional complication is how to
compare the hidden neurons in neural networks with di↵er-
ent topologies, as can be the case if the topology evolves.
To avoid that complexity in this first paper on the Creative
Thinking Approach, the topology of the neural networks is
fixed. In the discussion we propose ways of dealing with
variable topologies.

Following [17], the neural network controllers for our ex-
periments are Elman-Jordan networks [7], which are simple
recurrent networks. The networks are represented with a
direct encoding [27, 2].

Evolution was conducted in the Sferes2 evolutionary com-
putation framework [16]. As previously mentioned, all runs
feature the NSGA-II [4] multi-objective evolutionary algo-
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Figure 1: Comparing the behavioral diversity only (BDO) method from [6, 17] to the Creative Thinking
Approach (CTA) proposed in this paper. At each time step t, a vector of the robot’s input and output values
for that time step are concatenated to a large vector that characterizes the robot’s behavior.

rithm with two objectives: performance and diversity (either
BDO or CTA). All statistics are performed with the non-
parametric Mann-Whitney Wilcoxon test. Plots show medi-
ans (lines) and 95% bootstrapped confidence intervals of the
median (shaded areas), which are calculated by resampling
the data 5000 times. Confidence intervals are smoothed by
a median filter with a window size of 101 to reduce noise.
Asterisks below each plot indicate if the Creative Thinking
Approach performs significantly better than the behavioral
diversity only approach at that generation. The code and
data for all experiments are available upon request.

3. EXPERIMENTS AND RESULTS
3.1 Easiest Problem: The Deceptive Maze

In this experiment, the objective is to evolve a neural
network that is able to navigate its way through the maze
from the start to the goal (Fig. 2). The problem is from
Mouret and Doncieux 2012 [17] and is inspired by the de-
ceptive “Hard Maze” from Novelty Search papers [14, 13].
It is deceptive because the performance objective rewards
organisms for getting closer to the goal, but doing so results
in getting trapped in the dead end above the start. While
hard for traditional, objective-only EAs, solving this maze
is relatively simple for EAs that do encourage behavioral
diversity [17, 14, 13].

The neural network robot controllers for this problem have
7 input (sensor) neurons and two output neurons (Fig. 3).
Sensors include three range sensors, which provide the nor-
malized distance to the nearest obstacle in the direction that
sensor points, and four pie-slice goal sensors that fire if the
goal is within their purview, irrespective of intervening ob-
stacles, and thus serve as a compass toward the goal. The
two output neurons control the speed of each wheel. There
are 7 hidden neurons. The experiment is run 50 times with
a population size of 200 for 1500 generations.

Figure 2: The Deceptive Maze Environment

The performance measure rewards getting closer to the
goal [17]. Specifically, it is

performance = 1� distance to goal

size of maze
(1)

On this problem there is no significant di↵erence between
the treatments (p > 0.05) and both treatments solve the
problem in less than 1500 generations (Fig. 4). We hypoth-
esize that the problem is not di�cult enough for the Creative
Thinking Approach to make a di↵erence, and it may in fact
slow the search process down by diluting the selection pres-
sure on generating easily-produced behavioral diversity. We
next investigate whether the Creative Thinking Approach is
more advantageous on a harder problem.
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Figure 3: The robots and their sensors. (a) The
maze navigating robot has three distance-to-wall
sensors (arrows) and four pie-slice“compass”sensors
(blue wedges) that indicate the direction of the goal.
The angular range of the pie-slice sensors are shown;
these sensors can see through walls, acting as a com-
pass toward the goal. (b) The ball collecting robot
has three distance-to-wall sensors (arrows), two pie-
slice sensors that detect the presence of balls, and
two similar sensors with the same range that detect
the basket. The range of the right pie-slice sensors
is shown; the left pie-slice sensors are symmetric.
See text for a full description of all sensors. Figure
adapted from [17].

3.2 Harder Problem: Ball Collection
In this problem—from [6, 17]—a robot must navigate its

way around an unknown environment, pick up a ball, place
it in an illuminated area, and then repeat that process for
eleven other balls (Fig. 5). A trial consists of three sub-trials.
In each sub-trial, the robot starts at a di↵erent location and
must collect four balls, the initial positions of which are the
same for each sub-trial1. The three di↵erent starting loca-
tions for the robot are shown in Fig. 5. Those three di↵erent
starting locations are the same for all subsequent versions
of the ball collection problem, but are not pictured in sub-
sequent figures to reduce clutter. For this version of the
problem, trials stop at 9000 evaluations (3000 evaluations
for each sub-trial). The setup, including the robot’s neural
network, is reset before each sub-trial.

Performance on this problem is measured as the fraction
of balls placed in the lighted area. Note there is no pressure
on speed or e�ciency aside from the fact that being e�-
cient may enable collecting more balls. In this version of the
problem, the sequence in which balls are collected does not
matter. If a ball is dropped outside the lighted region, the
robot will be unable to pick it up again and fails to collect
that ball.

There are 10 inputs to the neural network (Fig. 3) [17]:
three laser range sensors that return normalized distances
to the nearest obstacles, two bumpers that return a 1 when
touching an obstacle and 0 otherwise, two basket-presence
sensors that detect the basket when in the angular range of
its sensors (Fig. 3) and not blocked by obstacles (contrary
to the maze navigating robot, this robot cannot see through
walls), two ball presence sensors with the same range and

1A video showing some of the evolved robot behaviors can
be viewed at EvolvingAI.com

Figure 4: Results for the Deceptive Maze problem.
In this and all subsequent plots, solid lines are me-
dians over 50 runs and colored regions indicate 95%
bootstrapped confidence intervals of the median.
Asterisks appear in the lower panel if the treat-
ments are statistically significantly di↵erent from
each other with p < 0.05.

properties as the basket sensors, and one ball-carrying sensor
that returns a 1 if the robot is carrying a ball and 0 other-
wise. The robot has 3 outputs (Fig. 3): two that control
the speed of each wheel and a third that controls an e↵ector
that can pick up a ball. To pick up a ball this output must
be above 0.5 when the robot is over the center of the ball.
Once a ball is collected, it is dropped any time this e↵ec-
tor output drops below 0.05. There are 10 hidden neurons
and 10 context neurons. Each input neuron is connected
to all hidden neurons. Each hidden neuron is connected to
exactly one context neuron and each context neuron is con-
nected to itself and all hidden neurons. The recursive nature
of these connections enables memory because the networks
can maintain data from previous states. Each hidden neuron
is connected to all output neurons [7, 17]. The population
size is 200 individuals. In each experiment, both treatments
are run 50 times. All other parameters are identical to those
in [17].

This problem is hard because no reward is given unless a
robot navigates to a ball, closes its gripper to pick the ball
up, keeps that gripper in the closed position while navigating
to the lighted area, and releases the ball in the lighted area.
Because none of these intermediate stepping stone behaviors
are rewarded via the performance objective, evolutionary
algorithms that are guided by only performance never solve
the task [17].

The BDO and CTA treatments in this paper, which both
reward for behavioral diversity, achieve perfect performance
on this problem on average (Fig. 5). The increased di�culty
of the problem is reflected in the larger number of genera-
tions required to solve it compared to the Deceptive Maze
Problem (compare the range of the y axes of Fig. 4 and
Fig. 5) and the fact that some runs in both treatments do
not solve the problem after 15000 generations. On this more
di�cult problem, the addition of the Creative Thinking Ap-



Figure 5: The Ball Collection Problem. The robot
must collect balls one at a time and place them in
the lighted area. There are twelve balls in total (four
pictured). The robot’s three starting locations (dif-
ferent location for each sub-trial) are shown. There
are four balls per sub-trial whose initial locations
are the same for all sub-trials.

proach improves performance, although there is rarely any
statistically significant advantage (Fig. 6).

3.3 An Even Harder Problem: Sequenced Ball
Collection

To increase the di�culty further, in this problem a reward
is only given if balls are placed in the lighted area in a pre-
defined order (shown in Fig. 7). This order is the same for
the three sets of four balls. On this more di�cult problem,
the addition of the Creative Thinking Approach improves
performance, and does so significantly from around 38000
to 53000 generations (Fig. 8).

3.4 Another Hard Problem: The Balls in
Corner Problem

To create another di�cult version of the ball collection
problem, we placed the balls in a compact area in a cor-
ner (Fig. 9). Doing so means that the robot is far less likely
to encounter a ball by chance, for three reasons. First, the
balls are in a smaller area, making it less likely for a robot
to randomly encounter one of them. Secondly, in the default
version of the problem, the balls surround the robot for one
of its three starting positions (Fig. 5). While the robot’s
three starting positions remain the same for this version of
the problem, because the balls are in the corner they no
longer surround the robot, meaning that most directions
from that starting location will not immediately lead to col-
lecting a ball. Third, it is much less likely for a robot con-
ducting a random or semi-random walk to make it deep into
a corner due to collisions with walls. All three reasons make
it less likely for the robot to initially, randomly encounter
a ball, which greatly increases the di�culty of the problem.
Recall that no fitness is gained until a ball is collected and
placed in the lighted area, so there is no chance of a robot
receiving any performance feedback if it does not at least

Figure 6: Results for the ball collection problem.
Asterisks below the plot indicate generations in
which the Creative Thinking Approach (CTA) per-
forms significantly better than the behavioral diver-
sity only (BDO) approach.

first encounter a ball (let alone the other things it needs to
do after picking a ball up).

On this di�cult problem, the advantage of adding the Cre-
ative Thinking Approach is statistically significant at nearly
every generation (Fig. 10). The median CTA run solves the
problem in around 15000 generations, whereas the median
run in the BDO treatment never solves the problem.

4. DISCUSSION
An objection to CTA may be its extra computational cost,

especially as the size of the neural network and length of the
evaluations increase. This same objection was mentioned
as a potential problem with the behavioral diversity only
(BDO) approach [6, 17], which includes all input and output
values in the behavioral characterization [6, 17]. However,
there are reasons why this objection is not a major concern.
There are e�cient algorithms for calculating Hamming dis-
tances between large vectors, and usually the computational
cost of fitness evaluations dominates this cost [6, 17]. More-
over, while adding hidden neurons to the behavioral char-
acterization increases the overall vector size, the number of
hidden neurons is usually only a small factor larger than the
number of input and output neurons, at least for most neural
networks currently experimented with in the field of Evolu-
tionary Robotics. As such, the algorithm is not slowed down
exponentially. However, this concern could become a factor
for neural networks with many times more hidden neurons
than input and output neurons.

Techniques can also be applied to reduce computational
costs while maintaining benefits of CTA. We can sample
only a subset of neurons and/or time points. Additionally,
techniques can be used to reduce the dimensionality of the
data in the hidden-neuron vector, such as Principal Compo-
nents Analysis [12], Independent Components Analysis [10],
or more modern machine learning techniques [19, 1].

Even if the approach is computationally slower, it is bet-
ter to have an approach that will eventually succeed if given



Figure 7: Sequenced Ball Collection Problem.
Robots must collect the balls and place them in the
lighted area in a predefined sequence. There are 12
balls in total (four pictured). The sequence for each
set of four balls per sub-trial is the same.

enough computation, rather than an algorithm that will spin
its wheels indefinitely. Similar arguments have been made
for Novelty Search [14]. As such, if the CTA approach does
increase the ability to solve some challenging tasks, as it ap-
pears to, it seems worthy of future investigation. Moreover,
that the CTA can solve some problems in fewer generations
than BDO suggests that it may actually save computation
(Figs. 8 and 10). While these comparisons were made on
generations, not actual running time, we did not notice that
CTA ran slower: the fitness evaluations and the idiosyn-
crasies of evolutionary runs were the dominant factors that
determined computational costs.

Another challenge for the Creative Thinking Approach is
dealing with algorithms that evolve the number of hidden
nodes, such as the NeuroEvolution of Augmenting Topolo-
gies algorithm [26]. Fortunately, that very algorithm o↵ers
a technical solution that makes it easy to conduct a prin-
cipled comparison of vectors of hidden node activity even
when those vectors are of di↵erent lengths. The answer is
NEAT’s historical marking scheme, which can keep track of
which hidden neurons should be considered the same, from
a historical (phylogenetic) perspective [26]. Explaining the
details of that algorithm are beyond the scope of this pa-
per, but NEAT’s historical marking scheme, which can be
applied to any topology-evolving neural network algorithm,
should enable the CTA to align hidden node activation vec-
tors in a principled fashion before calculating the Hamming
distance between them. Neurons that are phylogenetically
new in one network–and thus do not exist in the comparator
network–can be compared to binary slots always set to zero
in the comparator network’s vector.

Another objection could be that the CTA is simply carry-
ing out an exhaustive search. Importantly, however, while
the CTA is exhaustively searching in neural firing space,
that is far di↵erent from exhaustively searching in the much
larger genomic search space. In fact, papers on the behav-
ioral diversity only approach found that BDO worked as
well as hand-designed behavioral characterizations that were

Figure 8: Results from the Sequenced Ball Collec-
tion problem.

much lower-dimensional [6]. That is because algorithms that
reward behavioral diversity, like Novelty Search, search in
the space of behaviors, which is not exhaustive search in
the genome space [14, 13]. Like those algorithms, the CTA
approach encourages evolution to learn how to produce new
patterns of hidden neuron activity (in addition to behavior),
which is a challenging space in which to search. It is not pos-
sible to simply search directly in the space of neural firing,
because it is not known ahead of time which neural network
topologies will lead to which patterns of behavior and hidden
neuron firing. That problem is especially true when evolving
neural networks with generative encodings, which feature an
indirect mapping from the genome to a neural network, such
as the popular HyperNEAT algorithm [25, 2, 9]. Thus CTA
is not an exhaustive or random search in the extremely large
genotype space (or even neural network space, for genera-
tive encodings). Rather, it searches for genomes that tend to
produce novel thinking and novel behavior when mutated.

5. FUTURE WORK
As seen on the deceptive maze problem (Fig. 4), some

problems do not require the Creative Thinking Approach
and may be slowed down by it. It is thus useful to adjust
the weight of rewards for diversity in hidden neurons ac-
cordingly. On harder problems, we see that the CTA and
BDO are similar in performance (Figures 6, 8, 10) in early
generations. We assume this is because generating novel
behaviors is easier in early generations. We hypothesize
that increasing the weight for diversity in hidden neurons
as generation number increases will improve performance.
Another, perhaps more informed and thus more e↵ective
approach, is to increase the reward for hidden neuron diver-
sity as an inverse function of the behavioral diversity in the
current generation. In other words, if the search is currently
able to generate novel behaviors, do not add a reward for
novel thinking; if the search for novel behaviors stagnates,
increase the weight for creative thinking. Preliminary exper-
iments suggest these approaches improve performance and
in future work we will investigate them more thoroughly.

Another direction of future work is to investigate the Cre-



Figure 9: A harder version of the collection problem
in which balls are hidden in the corner. Placing the
balls in the corner makes the problem hard for three
di↵erent reasons (see text), significantly increasing
the problem di�culty.

ative Thinking Approach with recurrent neural networks on
problems where remembering information would be helpful,
but does not provide an immediate benefit. On such prob-
lems, the CTA could be a successful way of encouraging the
search process to try creating robots that remember di↵erent
things.

6. CONCLUSION
This paper introduced the Creative Thinking Approach,

which encourages di↵erent patterns of firing in hidden neu-
rons in addition to rewarding for novel behavior. In other
words, thinking of neural networks as models of animal
brains, it encourages robots to exhibit novel or creative
thinking to help solve problems. We showed that, on chal-
lenging problems, the Creative Thinking Approach signifi-
cantly outperforms a similar algorithm that rewards behav-
ioral diversity only. We also introduced the concept of a
novelty plateau, wherein the search process has no gradient
to follow to produce new behaviors. Such novelty plateaus
may help explain why rewarding creative thinking can help a
search process: encouraging creative thinking rewards step-
ping stones on the path to generating new behaviors.
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