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Abstract

The embodied cognition paradigm emphasizes that both bod-
ies and brains combine to produce complex behaviors, in con-
trast to the traditional view that the only seat of intelligence is
the brain. Despite recent excitement about embodied cogni-
tion, brains and bodies remain thought of, and implemented
as, two separate entities that merely interface with one an-
other to carry out their respective roles. Previous research
co-evolving bodies and brains has simulated the physics of
bodies that collect sensory information and pass that infor-
mation on to disembodied neural networks, which then pro-
cesses that information and return motor commands. Biologi-
cal animals, in contrast, produce behavior through physically
embedded control structures and a complex and continuous
interplay between neural and mechanical forces. In addition
to the electrical pulses flowing through the physical wiring
of the nervous system, the heart elegantly combines control
with actuation, as the physical properties of the tissue itself
(or defects therein) determine the actuation of the organ. In-
spired by these phenomena from cardiac electrophysiology
(the study of the electrical properties of heart tissue), we in-
troduce electrophysiological robots, whose behavior is dic-
tated by electrical signals flowing though the tissue cells of
soft robots. Here we describe these robots and how they are
evolved. Videos and images of these robots reveal lifelike
behaviors despite the added challenge of having physically
embedded control structures. We also provide an initial ex-
perimental investigation into the impact of different imple-
mentation decisions, such as alternatives for sensing, actua-
tion, and locations of central pattern generators. Overall, this
paper provides a first step towards removing the chasm be-
tween bodies and brains to encourage further research into
physically realistic embodied cognition.

Introduction and Background
The fields of evolutionary robotics and artificial life have
seen a great deal of emphasis on embodied cognition in
recent years [Cheney et al. (2013); Bongard (2013); Ri-
effel et al. (2013); Auerbach and Bongard (2012); Hiller
and Lipson (2012a); Lehman and Stanley (2011); Auer-
bach and Bongard (2010a,b); Pfeifer et al. (2007); Hornby
et al. (2001); Lipson and Pollack (2000)]. There is even a
paradigm called embodied cognition, which argues that the
specifics of the embodiment (such as the morphology) are

Figure 1: Current flowing through an evolved creature. The
legend for voltage within each cell (colors) is given in Fig. 3.

vital parts of the resulting behavior of the system: It argues
that the co-evolutionary connection between body and brain
is more deeply intertwined than the body simply acting as a
minimal physical interface between the brain and the envi-
ronment [Pfeifer and Bongard (2006)].

Recent work in evolutionary robotics has shown that
complex behaviors can arise when co-evolving bodies and
brains. At one end of the spectrum, Auerbach and Bon-
gard (2010b) demonstrated the evolution of physical struc-
tures that had no joints or actuators, and evolved to cover
the largest distance in a controlled fall due to gravity. While
that work exemplifies the evolution of behavior emerging
from morphology alone, it does not co-evolve any actuation
or control. Auerbach and Bongard (2010a) then evolved the
placement of CPG controlled rotational joints between cel-
lular spheres, thus co-evolving morphology and control.

Cheney et al. (2013) evolved locomoting soft robots
made of multiple different materials: two passive voxels
of differing rigidity and two actuated voxel types that ex-
panded cyclically via out-of-phase central pattern genera-
tors (CPGs). While this work added a variety of soft ma-
terials and a new type of actuation, the pairing of muscle
types directly to a CPG again reflected a focus on evolving
morphology rather than sophisticated neural control.

Many examples in the literature include the co-evolution
of a robot morphology with an artificial neural network con-
troller [Sims (1994); Lipson and Pollack (2000); Hornby
et al. (2001); Lehman and Stanley (2011)]. These studies
(and many more like them) involve what might be called
“ghost” networks: artificial neural networks that provide
control to the body, yet do not have any physical embodi-



Figure 2: An example of complex electrical wave propaga-
tion in cardiac modeling [Fenton et al. (2005)].

ment in the system they control. The state of input nodes to
these networks is often set by sensors in the robot and output
nodes typically signify behavioral outcomes in the actuators,
but the computation is done supernaturally, disjoint from the
body itself.

In the age of 3D printing, it is a realistic goal for robots to
physically walk out of a printer. It is thus worthwhile to con-
sider designing robots that can be physically realized: i.e.,
those whose controllers are accounted for by being physi-
cally woven into the design of the robot.

While the brains of animals are often a separate module
within their bodies, animals also have central and periph-
eral nervous systems extending throughout their bodies. An
extreme example of this is the octopus, which has as much
as 90% of its neurons existing outside of its central nervous
system [Zullo et al. (2009)]. The distributed and physical
layout of the nervous system over space may contribute sig-
nificantly to neural processing, as the delays and branching
in axons (the basis for nerves) are suggested to serve com-
putational functions [Segev and Schneidman (1999)].

Despite the prevalence of embodied, distributed circuitry
in nearly all of animal life, the idea of an embodied ner-
vous system has been absent from the field of evolutionary
robotics. The sub-field called Evolvable Hardware evolves
physical circuits for computer chips [Floreano and Mattiussi
(2008)], but such work has not been applied to evolving
the circuitry of artificial life organisms. We are unaware of
work with virtual creatures that have physically embodied
control systems (e.g. where neural circuitry physically runs
throughout the body of the creature). We present the first
such work in this paper.

We propose a very basic model of electrical signal propa-
gation throughout the body of an evolved creature. This em-
bodied controller is based on electrophysiology (specifically
at large scales, such as cardiac electrophysiology, Fig. 2).
Electrophysiology is the study of the electrical properties of
biological cells and tissues [Hoffman et al. (1960)]. In this
model, electrical pulses from a single centralized sinusoidal
pacemaker (analogous to the sinoatrial node – the pacemaker
in the heart [Brown (1982)]) are propagated through the

electrically conductive tissue of the creature. The location
and patterning of this conductive tissue is described by an
evolved Compositional Pattern Producing Network (CPPN)
genome. Evolution controls the shape of the body and the
electrical pathways within it, which both combine to deter-
mine the robot’s behavior.

The model involves conductive tissue cells that collect
voltage from neighboring cells, causing an action poten-
tial (spike) if the collected voltage exceeds the cell’s firing
threshold (Fig. 3). Once this threshold is crossed, the cell
depolarizes, causing a voltage spike that excites neighboring
cells. This voltage spike is followed by a refractory period,
during which the cell is temporarily unable to be re-excited.

This model allows for the propagation of information
through the body of the creature in the form of electrical sig-
nals. The structure of this flow is produced entirely by the
topology of the creature and the state of each cell’s direct
neighbors. In this sense, the model can be seen as a form
of distributed information processing. One could draw simi-
larities between this model and a 3D-grid of neurons, where
each neuron receives inputs from, and has outputs to, its im-
mediate neighbors. In this analogy, we are evolving where
neurons should exist in the grid, what type of material the
neuron is housed in, as well as the material type, if any, of
grid locations that do not contain neurons.

The placement of material, which is under evolutionary
control, directly determines the resultant behavior of the or-
ganism. Cells that actuate will contract and expand as they
depolarize (much like the contraction of cardiac muscles),
leading to the locomotion behavior of the creature. In order
to control the signal flow throughout the creature, insulator
cells are allowed, which are unable to accept and pass on
the signal. Evolution can also choose not to fill a voxel with
material. The morphology of the simulated robot and tissue
type at each cell is determined by a CPPN genome.

This model examines the evolution of embodied cogni-
tion at a more detailed level of implementation than is typi-
cal in the literature – with embodied control circuitry result-
ing directly from the morphology of the individual creature.
While this study only covers the classic problem of locomo-
tion, it is a step towards truly physically embodied robots.

Methods
CPPN-NEAT
The evolutionary algorithm employed in this study is CPPN-
NEAT. This algorithm has been previously described in de-
tail (Stanley, 2007, 2006; Auerbach and Bongard, 2010b;
Cheney et al., 2013), so it is only briefly described here.

A Compositional Pattern Producing Network (CPPN)
[Stanley (2007)] is variation of an Artificial Neural Network
(ANN) [McCulloch and Pitts (1943); Floreano and Mattiussi
(2008)] where each node can have one of many mathemat-
ical functions as an activation function (e.g. sine, cosine,
Gaussian, sigmoid, linear, square, or positive square root)



Figure 3: (top) A depiction of an action potential. Notice
how the voltage is below the threshold until a stimulus event
(such as a pacemaker or neighboring cell spike) pushes the
voltage to the threshold value. Once this threshold is met,
a voltage spike occurs via a process called depolarization.
The cell excites its immediate neighbors during this process.
Following the action potential, the cell enters a fixed length
refractory period, during which it is physically unable to
produce a new action potential. Finally, the cell returns to
its resting state, able to start the process again when a new
stimulus arrives. (bottom) These phases of the action poten-
tial cycle are mapped to the color code used to visualize the
soft robots in Figs. 1, 4, and 5. Image licensed via Creative
Commons.

instead of being limited to a sigmoid activation function.
In CPPN-NEAT, a design space is discretized into individ-
ual locations (in this case a 3D space is discretized into a
10×10×10 grid of voxels, for 1000 total voxels). The CPPN
is queried once per voxel to determine the phenotypic state
at that location (in this case, whether a voxel is present and,
if so, the material type). The inputs to the CPPN network
for each location are different: specifically, they include one
input node for each dimension of the space (here, reporting
the x, y, and z values of that location), as well an input that
reports the distance (d) from the center to the location. The
network also features output nodes for each material prop-
erty. There are three in this study: one node specifies if a
voxel exists at the queried location, the second decides if the
material at that location is conductive, and the third decides
whether or not the material is an actuated muscle (the latter
two only matter if the voxel is present).

Conductive VoxCad
Fitness is evaluated in the VoxCad soft body simulator
[Hiller and Lipson (2014)]. Its dynamics have previously
allowed the evolution of complex and lifelike behaviors in
soft robots, as it can simulate muscle contractions [Cheney
et al. (2013)]. Further details about VoxCad can be found in
Hiller and Lipson (2012b).

This work adds electrophysiology to VoxCad by adding a
simple action-potential model, acting on the scale of a sin-
gle voxel (analogous to a cell). Each voxel has an imme-
diate membrane potential level (the difference between the
electric potential inside and outside the cell), as well as a
threshold membrane potential level. In an action-potential
model (Fig. 3), a cell’s resting potential is below that of the
threshold potential. When the membrane potential reaches
its threshold value, the cell depolarizes, causing a spike in
the cell’s membrane potential and voltage.

Following the depolarization, the cell hyperpolarizes,
dropping the voltage and membrane potential below their
original values, as the cell enters a refractory period. During
this refractory period, the cell is unable to be depolarized
again. In biological cells, the refractory period also consists
of a relative refractory period when the cell is able to be de-
polarized, but only by unusually high voltage levels. For
simplicity, we ignore this aspect in our model, and consider
only the absolute refractory period, during which depolar-
ization is disallowed. This refractory period means that the
current is unable to flow backwards towards recently depo-
larize cells, causing the unidirectional propagation of action
potentials in a wave across the cells.

A cell’s action potential (starting with the beginning of
the depolarization phase in Fig. 3) triggers a sinusoidal ex-
pansion/contraction of that cell with a maximum amplitude
of 39% linear expansion per voxel side.

A given cell may transmit current to any other cell that it
is physically touching. In 3D, this rule means that up to 26
neighboring voxels (the “Moore neighborhood”) can be acti-
vated by a single voxel. The threshold potential of each cell
is set such that it will be excited if, and only if, at least one
of its neighboring cells undergoes an action potential that
causes that cell’s voltage to spike. The time it takes a cell to
excite its neighbor is half of its depolarization period. This
delay in excitation means that the electric signal does not in-
stantly activate all contiguously connected cells, but rather
spreads outwards in a wave-like pattern of muscle actuation.

Cells may be of any of the following types: empty, con-
ductive muscles, insulating muscles, conductive passive tis-
sue, insulating passive tissue, or a pacemaker cell. Near the
center point of the discretized 10 × 10 × 10 design space,
a lone pacemaker is placed (cell number 555 out of 1000).
Analogous to the sinoatrial node in cardiac electrophysiol-
ogy, this pacemaker node serves as the source of electric
stimulation for the entire system. Insulating cells are similar
to the cells explained above, except that they are unable to



accept current from neighboring cells and thus never reach
their threshold potential or produce an action potential.

In this model, the refractory period lasts 5 times as long as
the depolarization period. This means that at least 5 voxels
must separate the leading edges of two serial action poten-
tial waves. Since the pacemaker is placed in the center of
the 10 × 10 × 10 space, approximately one wave of action
potentials would exist at any given time in a setup with a uni-
form cube of entirely conductive material – where a wave of
action potentials would propagate uninterrupted, with a new
one starting around the time the first reaches the outer edge
of the space. We chose this setup to encourage the evolution
of static gaits, which can be more robust and transferable to
reality than dynamic gaits [Belter et al. (2008)].

The length of the expansion/contraction period of each
node is set equal to the refractory period, such that each cell
is guaranteed to be fully returned to its original size before
its next actuation cycle begins.

Task and Fitness Evaluation
Following Cheney et al. (2013), we evolve these electro-
physiological robots for locomotion over flat ground. This
simple task and environment make fitness evaluation easy.
Despite its simplicity, the task is a classic problem in the
field, and has been repeatedly shown to produce an array
of complex morphologies and interesting behaviors [Cheney
et al. (2013); Clune et al. (2009, 2011); Auerbach and Bon-
gard (2014); Lehman and Stanley (2011)].

Each creature is simulated for 20 times the length of an
expansion/contraction cycle. Its displacement between the
starting coordinates and the creature’s final center of mass
(in the xy plane) is recorded. In an effort to discourage de-
signs that might excite as many cells as possible, and to en-
courage designs with sparse spindles of connectivity (simi-
lar to the peripheral nervous system), the distance traveled

is multiplied by 1 − (# of conductive cells)
1000 . Thus the fit-

ness function incentivizes minimizing the amount of con-
ductive tissue and maximizing the distance traveled. While
a multi-objective technique may be ideal in finding the opti-
mal tradeoff between these goals, we follow previous CPPN-
NEAT research in using this single, multi-part fitness func-
tion [Cheney et al. (2013); Auerbach and Bongard (2009)].

Experimental Parameters
Unless otherwise noted, each treatment described below
consists of 48 independent runs (with identical initial con-
ditions across treatments). Each run consists of a population
size of 30 individuals evolved for 1000 generations. Unless
otherwise noted, all other parameters are consistent with Ch-
eney et al. (2013).

Statistical Reporting
Because the data are not normally distributed, all plots show
median fitness (thick, center lines) bracketed by two thin

lines that represent 95% bootstrapped confidence intervals
of the median [Sokal and Rohlf (1995)]. For the same
reason, all p-values are generated with the non-parametric
Mann-Whitney-Wilcoxon Rank Sum test, which does not
assume normality. Reported p-values compare the distance
traveled by the top organism for each of the 48 runs at the
final (1000th) generation. Plots report distance traveled, not
adjusted fitness (which penalized for the number of conduct-
ing voxels as explained previously).

Results
Since this is the first study of evolved electrophysiological
robots, there are many unanswered questions regarding the
design and implementation of such a system. Many arbitrary
design choices were made during the initial implementation.
Here, we examine the impact of some of these choices.

As with many explorations in evolved virtual organisms,
one of the main goals is complex, natural-appearing behav-
ior. However, there are no satisfactory metrics for the “natu-
ralness” or complexity of evolved behaviors. For this reason,
we must rely on our qualitative, subjective assessments. A
video of the evolved behaviors can be seen on the “Cornell
Creative Machines Lab” Youtube channel, or found directly
at this link: http://goo.gl/CvJp4l. We believe the
behaviors are interesting, complex, and lifelike – at least as
much as in Cheney et al. (2013) – despite the added chal-
lenges of evolving physically embedded control.

We observed that physically instantiated control circuitry
can produce both predictable and chaotic behaviors. Fig. 4
shows a simple wave of action potentials propagating out-
wards from the center of the creature, with little interrup-
tion. Fig. 5 reveals the evolution of unpredictable physical
dynamics that still produce functional behavior. Notice the
multiple “inputs” to a potential self-sustaining circular path-
way. Fig. 1 demonstrates a circular actuation pattern of in-
termediate complexity, due more so to changes in the robot’s
shape than to material differences within it. We now turn to
more quantitative analyses.

Pacemaker Placement

The placement for the pacemaker was an arbitrary decision
made during the design of this new system. In an effort to
mimic the midline location of the central nervous system
in biology, the pacemaker was placed in the middle of the
design space from which the creature was built. Thus action
potential waves could propagate out equally in all directions
and were not biased in any particular direction of travel. In
order to test the effect of this arbitrary choice, a treatment
was also performed where the pacemaker was located at the
center voxel of the roof of the 10 × 10 × 10 design space –
voxel number 955 (where indices increase from the bottom,
left hand, nearest corner), as well as a treatment that placed
the pacemaker in the top right corner – voxel 999.



Figure 4: An action potential wave propagating across a
mostly homogeneous surface. (left, single robot): The
robot has a large patch of continuous conductive muscle
on its back. In this pre-simulation state, cell colors signify
the following: orange cells are conductive, blue cells are
non-conductive; dark colors (blue or orange) signify mus-
cle cells, while lighter colors (blue or orange) signify non-
actuatable cell tissue; the red cell at the bottom is the robot’s
pacemaker cell. (right, 3 × 4 grid of robots): A progres-
sion over time (left to right, top to bottom) shows the wave-
like propagation of the action potential phases (color mean-
ings are described in Fig. 3). Note how the action potential
emerges from the center, stimulated by the wave propagat-
ing out through the conductive tissue from the pacemaker
below it. Following the light blue depolarization, the yellow
and red phases show the longer lag of the refractory period,
following in exactly the same pattern made by the leading
edge of the action potential wave. As the wave fully passes,
the cells return to their dark resting state and are thus able to
spike again with a new action potential when the next wave
comes.

As shown in Fig 6, the placement of this pacemaker
significantly affects performance. While a central loca-
tion (baseline treatment) shows significant advantages com-
pared to the top-center and top-corner pacemaker locations
(p = 4.91 × 10−11 and 7.16 × 10−16, respectively), a sta-
tistically significant difference is also demonstrated between
the two less-different treatments: the top-center location out-
performed the top-corner location (p = 3.43×10−4). These
results show that the pacemaker location can have a clear ef-
fect on the evolved behaviors. Future work shall place the
exact location under evolutionary optimization.

Speed of Pacemaker
Another implementation decision was the low-frequency
pacemaker to allow for static gaits. The increased stabil-
ity and robustness of static gaits is appealing, and this may
allow better transferability to physical robots (Belter et al.,

Figure 5: A more complex electrophysiological robot. (left
robot): Contrary to Fig. 4, this creature shows complex pat-
terning of the orange conductive tissue within the insulating
blue tissue. (right three robots): As they unfold over time
(left to right), the action potential waves in this robot pro-
duce a highly fractured, counter-intuitive actuation pattern
that involves electrical signals flowing through long, sparse
connective corridors and around corners (an explanation of
the colors is provided in Figs. 3 and 4). The result is an
interesting and unexpected behavioral pattern wherein the
creature mashes and spins the left side of its body, which is
separated from the larger, right side of its body by a large,
oddly shaped internal cavity. Despite this bizarre behavior,
it effectively locomotes. This behavior and others can be
viewed on Youtube at: http://goo.gl/CvJp4l.

2008). However, animals often employ dynamic gaits when
there is an incentive for speed (as there is here). The tradeoff
between these two is not known in this system. To examine
this tradeoff, we compared three different treatments. First,
the baseline treatment includes a pacemaker with the rela-
tively slow pace of 40 beats per second (BPS). Since the
baseline evaluation period is half a second, this results in
20 electrical pulses from the pacemaker per trial. A second
treatment explores the increased potential for dynamic gaits
at the maximum pacemaker speed of 80 BPS (the limit is
due to the fixed length of the refractory period). In this faster
treatment, each individual cell contracts at the same rate as
before, but the pacemaker is now exciting cells as soon as
their refractory period ends, instead of waiting (the length of
an additional actuation cycle) before sending another pulse
into the system. This system uses twice the amount of en-
ergy, producing 40 action potential waves in the same half
second. In a third treatment, the faster paced (80 BPS) pace-
maker is evaluated for half its normal time length, result-
ing in 20 beats per evaluation. This treatment allows a fair
comparison of pacemakers in terms of distance traveled per
“beat”, rather than per unit time.

Unsurprisingly, the faster pacemaker evaluated for the full
half second outperforms both the slower pacemaker evalu-
ated for the same time period and the faster pacemaker eval-
uated for the shorter evaluation time (p < 10−16 for both,
Fig. 7). Interestingly, the frequency of the pacemaker has
no significant effect on the distance traveled (p = 0.51 at
generation 1000), suggesting that any disparity between the
faster and slower gaits was not realized in simulation (with
the number of beats held constant). Testing this result in the
transfer to physical robots is a subject for future work.
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Figure 6: The effect of the placement of the central pattern
generator (CPG) on the evolved speed. In one treatment,
the CPG is placed at the top corner of the 10× 10× 10 de-
sign space (voxel 999). This treatment performs slightly, but
significantly (p = 3.43 × 10−4), better than another treat-
ment that places the CPG at the center of the top plane of
the bounding box (voxel 955). Outperforming both of these
(p < 4.91 × 10−11) is the baseline treatment in which the
CPG is always placed as close to the center of the bounding
box as possible.

Touch Sensors

Another implementation decision was the use of pacemakers
as the primary drivers of the system. While pacemakers, also
known as central pattern generators, are biologically moti-
vated [Ijspeert et al. (2007)], we could instead ask evolution
to generate its own cadence. To provide an alternative to the
pacemaker, we tested a treatment with touch sensors in lieu
of a steady internal signal.

The touch sensors, like the pacemaker, are capable of pro-
ducing an electrical signal. However, they do so in response
to contact with the ground, rather than in a regular rhythm.
In this treatment, all conductive cells have this touch-sensing
ability and produce an action potential when in contact with
the ground if not in the refractory period. Thus waves of
action potentials propagate outwards from the touch sensors
only when they are both in contact with the ground and fully
recovered from their prior depolarization.

Thus, the upper bound on the number of action potentials
that the touch sensors could produce is that of an 80 BPS
pacemaker (the 80 BPS pacemaker fires again as soon as ex-
iting the refractory period, where the touch sensors do so
only if also touching the ground at that time – the slower 40
BPS pacemaker waits the length of one cycle before firing
again). To reach this upper bound, touch sensors would have
to be touching the ground exactly at the time when they com-
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Figure 7: The effect of faster pacemakers (CPGs). It is not
surprising that a faster CPG (80 beats per second) travels
farther when evaluated for longer, or when compared to a
slower CPG (p < 10−16). However, when the the compar-
ison is made according to distance per beat (half time/full
speed against half speed/full time – both producing a total of
20 beats) there is no difference in their performance at Gen-
eration 1000 (p-value = 0.51), suggesting that CPG speed
does not greatly affect evolved locomotion speed.

pleted their refractory period, and thus it is likely that this
ceiling would not be reached in all cases. For a comparison,
Fig. 8 shows the median distance traveled over evolution-
ary time plotted against that of the slower pacemaker (40
BPS) and the faster pacemaker (80 BPS) described above,
and evaluated for the baseline half-second evaluation time.
It is not surprising that the slower pacemaker falls behind
the pack here, as it is handicapped by a throttle on its only
source of action potentials compared to the faster pacemaker
and the touch sensors (p < 10−16). The tighter race is be-
tween the touch sensor and the faster pacemaker. In the early
stages (< 150 generations), the robots with touch sensors
significantly outperform robots with a pacemaker. However,
in the later stages of evolutionary optimization, the touch
sensor treatment shows modest gains compared to the con-
tinued innovation of the pacemaker treatment, with the pace-
maker treatment significantly outperforming it at the end of
the run (p = 1.27 × 10−7). The relatively low level of im-
provement in the touch sensor treatment in the later stages
of evolution may suggest the premature convergence on lo-
cal optima. The multiple points of origin for action poten-
tial waves, and thus wave collisions, may have also had an
effect. An additional issue that could have hindered perfor-
mance in this treatment is the upward propagation of signals
from touch sensors on the ground, versus outwards expand-
ing waves from the center of the organism.
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Figure 8: The performance of touch sensors vs. central pat-
tern generators. The touch sensor treatment produces an
expected number of beats with the upper bound set by the
faster (80 beat/sec) CPG. Despite early evolvability leading
to a statistically significant advantage in the first 150 gener-
ations, in later generations the touch sensor setup is unable
to produce creatures that travel as far as the faster CPG setup
(p = 1.27 × 10−7 at Gen. 1000). Artificially throttled, the
slow CPG is unable to compete with either (p < 10−16).

Expansion/Contraction Cycle

In the soft robot evolution system described by Cheney et al.
(2013), regular, quickly repeating, and coupled out-of-phase
sinusoidal action cycles defined the expansion and contrac-
tion of cells. In this model, which does not feature the same
complimentary muscle types, the question of actuation cycle
is not entirely clear. In an attempt to explore this, here we
test the effectiveness of contraction-then-expansion phase
cycles against expansion-then-contraction cycles (Fig. 9).
These treatments take place on the baseline (slow) pace-
maker setup, as to not allow continuous and quickly repeat-
ing expansion/contraction cycles, but rather to have a break
between actuations. Despite the same number of beats (and
thus the same amount of overall expansion and contraction)
in both setups, the contraction-then-expansion setup per-
forms significantly better (p = 1.94× 10−3). While the rea-
son for this difference is not entirely clear, it may be due, in
part, to a larger continuous expansion period from the trough
of the sine wave to its peak (continuous expansion from min-
imum to maximum size) in the contraction-then-expansion
treatment. In contrast, the expansion-then-contraction setup
includes a full-cycle length pause in the middle of its expan-
sionary period. This explanation would suggest that more
locomotion tends to come from pushing than pulling, which
is in line with our observations from viewing videos of the
evolved behaviors.
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Figure 9: Unlike the regularly occurring actuation cycles of
Cheney et al. (2013), the electrophysiological actuations in
this paper do not have a necessary order: either expansion
or contraction can occur first. It turns out that performance
is significantly higher when muscles contract first and then
expand, rather than vice versa (p = 1.94× 10−3).

Discussion

This work reduces the separation between bodies and brains
in research into embodied cognition. We did so by em-
bedding the control systems into the physical simulation of
the robot’s morphology. Perhaps most interesting about this
work is that the complex and interesting behaviors are the
direct result of the morphology of the creatures, as the con-
trol is woven directly into the structure of the organisms. In
this work the size of the creatures was limited for computa-
tional reasons, but in future work we plan to explore larger
design spaces. We also plan to test different ways of imple-
menting electrophysiological robots and to challenge them
to perform more difficult tasks.

Conclusion

We have introduced electrophysiological robots, which are
inspired by the electrical properties of cardiac tissue. The
behavior of these robots is governed by electrical signals
flowing though the evolved cells of soft robots. We de-
scribed these robots and how they are evolved, including the
evolution of interesting behaviors, despite the added chal-
lenge of physically embedded control structures. We also
provided an initial experimental investigation into different
implementation decisions, such as alternatives for sensing,
actuation, and central pattern generator locations. We be-
lieve that this paper provides a first step towards removing
the gulf between brains and bodies to encourage further re-
search into physically realistic embodied cognition.
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