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ABSTRACT
Algorithms for evolving agents that learn during their life-
time have typically been evaluated on only a handful of en-
vironments. Designing such environments is labour inten-
sive, potentially biased, and provides only a small sample
size that may prevent accurate general conclusions from be-
ing drawn. In this paper we introduce a method for auto-
matically generating MDP environments which allows the
difficulty to be scaled in several ways. We present a case
study in which environments are generated that vary along
three key dimensions of difficulty: the number of environ-
ment configurations, the number of available actions, and
the length of each trial. The study reveals interesting differ-
ences between three neural network models – Fixed-Weight,
Plastic-Weight, and Modulated Plasticity – that would not
have been obvious without sweeping across these different
dimensions. Our paper thus introduces a new way of con-
ducting reinforcement learning science: instead of manually
designing a few environments, researchers will be able to
automatically generate a range of environments across key
dimensions of variation. This will allow scientists to more
rigorously assess the general learning capabilities of an al-
gorithm, and may ultimately improve the rate at which we
discover how to create AI with general purpose learning.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning-Concept Learn-
ing, Connectionism and Neural Nets

General Terms
Experimentation, Algorithms

Keywords
Evolutionary robotics, Generative encodings, Neural net-
works, Learning, Neuromodulation
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1. INTRODUCTION
A long-standing goal in artificial intelligence is producing

agents that learn throughout their lifetime [24]. One tech-
nique for doing so is to combine evolutionary algorithms
with algorithms for intra-life learning [1, 9, 19]. A challenge
for scientists in this field is evaluating agents over more than
a few environments [2, 6, 15, 17, 21–23, 26, 28, 33].

Designing environments is labour intensive, and any sin-
gle given environment is potentially open to bias towards
or against certain kinds of algorithms and models [9, 18].
Testing on only a few environments provides only a small
sample size that may prevent accurate general conclusions
from being drawn [9, 18].

To address these problems, we present a method for au-
tomatically generating environments for which the difficulty
can be scaled in several key ways. This automated environ-
ment generation method allows a more rigorous assessment
of the learning capabilities of new models and algorithms.
In what follows, we first introduce the concepts behind au-
tomatically generating environments. We then present a
brief case study that demonstrates how this technique can
generate environments for which the difficulty can be var-
ied over three dimensions. The study reveals differences be-
tween three neural network models that would not have been
obvious without sweeping across these difficulty dimensions.

The overall goal of our paper is to encourage research into
ways to automatically test algorithms across many different,
important dimensions of variation. Doing so may ultimately
improve the rate at which we discover how to create AI
capable of general purpose learning.

2. PREVIOUS WORK
While the technique in this paper is potentially beneficial

for any type of learning agent, in this paper we focus on its
benefits in the field of evolving plastic neural networks, i.e.
those that learn within their lifetimes. Evaluating the fitness
of such agents requires testing the agent’s ability to learn and
exploit information about its environment to achieve goals.
Such evaluations require producing environments that are
different in some way each generation or that change during
a fitness evaluation [6, 17, 26, 28].

Initial studies on evolving plastic neural networks that
perform intra-life learning focused on supervised learning [2,
6, 12]. Nearly all subsequent research has focused on rein-
forcement learning [15, 17, 21–23, 26, 28, 33]. In most rein-
forcement learning experiments the fitness of an agent is the



amount of reward it receives in its lifetime [17, 26, 28] or is
strongly correlated with the reward received [15, 22].

To maximize rewards, agents typically must learn an as-
sociation that changes during their lifetime, such as which
colour flower provides the most nutrition in a simple bee
foraging task [17, 20, 27], which object types are food or
poison in a more complex foraging task [28], or which arm
of a T-maze contains the highest-value reward [20, 21, 26].

There have been variations on these kinds of environments
designed to increase their difficulty. For example variations
on the T-maze include the double T-maze, which has four
arms instead of two [20, 26], a version requiring the agent to
learn a possibly non-linear association between the percep-
tion of objects and their reward value [21], and a continuous
version where the only input to the controller, besides a re-
ward signal, comes from 5 range-finder sensors [22].

Possibly one of the most difficult tasks studied to date, in
terms of the size of the exploration space and the number
of associations to memorise, is a purely associative task in
which agents learn associations between each possible input
and output pattern [33, 34]. Aside from an input reward
signal, the input and output vectors were four binary values.
To simplify the task only one bit of either was set to 1, the
rest were 0. The number of possible combinations to learn
is 16, or four times as many as the double T-maze.

Over all previous work on evolving plastic neural networks
that perform intra-life learning, only a handful of environ-
ments or tasks have been considered. The tasks have typ-
ically required a simple exploration strategy to determine
which of a small set of behaviours should be conducted.

In any given study a newly introduced algorithm or model,
such as an encoding scheme or neural network model, is
typically assessed on only one or two environments. Fur-
thermore, the variations of environments typically alter the
environment in a single way. While it is understandable
that few environments are tested, because designing environ-
ments is labour-intensive, the unfortunate result is that we
problematically attempt to draw general conclusions about
new algorithms and models from a very small sample size.

A method for automatically generating a broad range of
environments would be beneficial in order to more rigorously
assess the learning abilities of new models and algorithms.

3. METHODS
In the field of reinforcement learning, environments are of-

ten represented by a Markov Decision Process (MDP) that
consists of a finite set of discrete states [24]. To move from
one state to another in the environment an agent must per-
form one of a finite number of actions (with some actions
possibly having an effect only in some states). Some state
transitions confer a reward value. The task for the agent is
to maximise the reward it receives over its lifetime, usually
by performing an exploration of the environment to deter-
mine the expected future reward for each action in each state
and then exploiting this knowledge.

A key insight of this paper is that this traditional way
of representing reinforcement learning environments permits
us to algorithmically generate novel environment instances
with tunable difficulty over multiple dimensions, hereafter
referred to as difficulty dimensions. To generate an environ-
ment, each state is assigned a random mapping of actions
to transitions to other states, and each state transition is
assigned a randomly selected reward value.

Environment configurations
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Figure 1: Automatically Generated Environments.
For a single evolutionary run we generate N MDP environ-
ments that all have the same number of states and number
of possible actions. We refer to these as environment con-
figurations. A fitness evaluation consists of multiple sets of
trials, with each environment configuration being presented
for several consecutive trials – a set of trials – before the
next environment configuration is presented for a set of tri-
als. This process is repeated until all N environment config-
urations have been presented. Following [34], we reset the
network at the beginning of each set of trials because we
are testing the ability to learn, not the ability to forget and
learn. Thus each set of trials simulates a lifetime for the
agent, providing a more statistically informed evaluation of
the general learning capabilities of the agent by avoiding the
noise introduced by agents that just happen to work well for
a particular ordering of the environment configurations. N
equals the number of environment configurations, allowing
an agent that can perform a good behaviour for each envi-
ronment configuration to try each behaviour in turn within
a set of trials until it discovers the best behaviour for the
current configuration. The reward Rx,a received by agent a
in the last trial of each set of trials x, is the proportion of
the maximum possible reward maxRx for the environment
configuration presented in that set of trials. The fitness is
calculated as the sum of these proportions over all sets of
trials.

3.1 Assessing Learning Capabilities
As noted previously, assessing the learning capabilities of

an agent in an evolutionary framework requires producing
environments that are either different each generation or
that change in some way during the agent’s lifetime. For
the case study in this paper we adopt the latter approach.

Figure 1 describes how an agent’s fitness is evaluated. The
task of the agent is to determine, over a given set of tri-
als, the current environment configuration and adopt the
optimal behaviour for that configuration. Switching be-
tween environment configurations during the agent’s life-
time, with each configuration being presented for several
consecutive trials before the switch, is similar in spirit to
most environments from previous work on evolving plastic
neural networks. For example, the T-maze environment has
two configurations, one for each reward location. The agent
must determine which configuration it is in and adopt the
appropriate behaviour until the environment configuration
changes.

One strategy an evolving agent can take, which frequently
emerged in previous work [17, 21–23, 26, 28, 33], is for an
agent to perform multiple fixed behaviours, one for each en-



vironment configuration, and iterate over those behaviours
until the correct one is found in a given set of trials. The
minimum number of trials per set of trials required for an
agent to try each fixed behaviour in turn until it finds the
correct one for the environment configuration being pre-
sented is thus the number of environment configurations.
Thus in this case study the number of trials in a set of trials
is the same as the number of environment configurations.

Only the reward received in the last trial of each set of tri-
als contributes to the fitness. Including reward only from the
last trial promotes agents that are able to determine which
environment configuration they are operating in and to then
adopt the best behaviour for that configuration, thereby col-
lecting the highest reward in the last trial. Specifically, the
fitness of an agent is calculated as the sum of the propor-
tion of the maximum possible reward that can be earned in
the last trial of each environment configuration the agent
encounters in a lifetime. The agent – here, a neural network
– is reset to its initial state between each set of trials.

Some of the dimensions over which the difficulty of this
task can be varied are: the number of states; the number
of available actions; the number of environment configura-
tions; whether state transitions are probabilistic; whether
the agent can directly observe the state of the environment;
how regular the structure of the state transitions is (e.g.
constraining transitions such that the states form a grid);
and the length of a single trial.

In this case study we demonstrate how environments can
be automatically generated along three different dimensions
of variation. Where not specified, the number of actions and
the length of trials are set to 4 and the number of environ-
ment configurations per run is 8. For any given state, the
proportion of actions that have an effect – for which a state
transition will occur – is 0.75, and the proportion of state
transitions that provide a reward value is 0.5. When gen-
erating environments these proportions are evaluated prob-
abilistically. All environments are deterministic, the envi-
ronment state is directly observable by the agent and the
structure of the environments is unconstrained.

For these environments, the complexity of the optimal be-
haviour for a configuration increases as the available actions
and trial length difficulty parameters are increased.

3.2 Neural Network Models
Our case study examines three different neural network

models, which control agents operating in MDP environ-
ments. We test these three treatments across three dimen-
sions of environmental difficulty to demonstrate that auto-
matically generated environments can reveal differences bet-
ween neural models. The three neural network models are
(1) non-plastic, fixed-weight, (2) Hebbian learning, and (3)
neuromodulated Hebbian learning.

Fixed-Weight
The Fixed-Weight model is a typical fixed-weight, recurrent
neural network in which the neurons have a sigmoidal, rate-
based activation function [16].

Plastic-Weight
The Plastic-Weight model is identical to the Fixed-Weight
model, but instead of fixed weights it has a more general
form of Hebbian learning [13] introduced by Niv et al. [17].
Whereas Hebbian learning increases the strength of a con-

nection if both the pre-synaptic and post-synaptic neuron
fire together, the parametrised model allows connections to
both increase or decrease, and do so in more situations. The
model consists of four terms: (A) a correlation term that
only adjusts the weight when the pre- and post-synaptic ac-
tivation signals are correlated; (B) a pre-synaptic term that
adjusts the weight based only on the pre-synaptic signal;
(C) a post-synaptic term that adjusts the weight based only
on the post-synaptic signal; and (D) a constant term that
adjusts the weight only as a function of time, independently
of pre- or post-synaptic activation signals.

The coefficients of these terms, as well as overall “learning
rate” η, are the parameters of the model:

∆w = η(Axy +Bx+ Cy +D) (1)

where x and y are the pre- and post-synaptic activation sig-
nals respectively. A, B, C, D, and η are evolvable.

Modulated Plasticity
The Modulated Plasticity model is identical to the Plastic-
Weight model, but adds a model of neuromodulation [22,
26], which allows learning to be turned on and off for a subset
of connections based on environment stimuli and the state
of other neurons. Thus the neural network can selectively
turn learning on or off in a subset of connections depending
on the situation that the agent is in. Our implementation of
neuromodulation is identical to that of Risi and Stanley [22].

In this model some connections carry a modulatory signal
rather than a normal activation signal. Every neuron has a
modulatory activation level as well as the standard activa-
tion. The modulatory activation level is calculated similarly
to that of the normal activation level:

mi =
∑

wji∈Mod

wjioj (2)

where mi is the modulatory activation for neuron i, wji

is the weight of the synapse connecting neuron j to i, oj is
the output of neuron j and Mod is the set of modulatory
synapses. The modulatory activation level mi modulates
the plasticity of regular (i.e. non-modulatory) connections
leading into neuron i. Based on the plasticity model from
Niv et al. [17] this gives the updated plasticity rule:

∆w = tanh(mi/2)η(Axy +Bx+ Cy +D) (3)

3.3 HyperNEAT
This section is from [8] with minor modification. In 2007

an encoding was introduced called Compositional Pattern
Producing Networks (CPPNs), which abstracts the process
of natural development without requiring the simulation of
diffusing chemicals [29]. When CPPNs encode ANNs, the
algorithm is called HyperNEAT [30], which is described be-
low. A key idea behind CPPNs is that complex patterns can
be produced by determining attributes of their phenotypic
components as a function of their geometric location. This
idea is based on the belief that cells (or higher-level mod-
ules) in nature often differentiate into their possible types
as a function of where they are situated in geometric space.
For example, for some insects, a segment at the anterior pole
should produce antennae and a segment at the posterior pole
should produce a stinger.



Components of natural organisms cannot directly deter-
mine their location in space, so organisms have evolved de-
velopmental processes that create chemical gradients that
organismal components use to figure out where they are and,
thus, what to become [5]. For example, early in the devel-
opment of embryos, different axes (e.g., anterior-posterior)
are indicated by chemical gradients. Additional gradients
signaled by different proteins can exist in the same area
to represent a different pattern, such as a repeating motif.
Downstream genes, such as Hox genes, can then combine
repeated and asymmetric information to govern segmental
differentiation [5]. Further coordinate frames can then be
set up within segments to govern intra-module patterns.

3.3.1 CPPNs
One of the key insights behind CPPNs is that cells in sil-

ico can be directly given their geometric coordinates. The
CPPN genome is a function that takes geometric coordinates
as inputs and outputs the fate of an organismal component.
When CPPNs encode two-dimensional pictures, the coordi-
nates of each pixel on the canvas (e.g., x = 2, y = 4) are
iteratively passed to the CPPN genome, and the output of
the function is the color or shade of the pixel (Figure 2).

x y

value at x,y
x

y

...for all x,y coordinates

gaussian(x)

sine(y)

Figure 2: Compositional Pattern Producing Net-
works. CPPNs compose mathematical functions to gener-
ate regularities, such as symmetries and repeated modules,
with and without variation. This figure is adapted from [29].

Each CPPN is a directed graph in which every node is it-
self a single function, such as sine or Gaussian. The nature
of the functions can create a wide variety of properties, such
as symmetry (e.g., a Gaussian function) and repetition (e.g.,
a sine function) that evolution can exploit. Because the
genome allows functions to be comprised of other functions,
coordinate frames can be combined and hierarchies can de-
velop. For instance, a sine function early in the network
can create a repeating theme that, when passed into the
symmetrical Gaussian function, creates a repeating series of
symmetrical motifs (Figure 2). This procedure is similar to
the natural developmental processes described above [5].

The links that connect and allow information to flow bet-
ween nodes in a CPPN have a weight that can magnify or
diminish the values that pass along them. Mutations that
change these weights may, for example, give a stronger in-
fluence to a symmetry-generating part of a network while
diminishing the contribution from another part.

When CPPNs are evolved artificially with humans per-
forming the selection, the evolved shapes look complex and
natural (Figure 3) [25]. Moreover, these images display the
features in natural organisms that indirect encodings were

designed to produce, namely, symmetries and the repetition
of themes, with and without variation.

3.3.2 Encoding ANNs with CPPNs
In the HyperNEAT algorithm, CPPNs encode ANNs in-

stead of pictures, and evolution modifies the population of
CPPNs [11, 30]. HyperNEAT evolves the weights for ANNs
with a fixed topology. The ANNs in the experiments in this
paper feature a two-dimensional, m × n Cartesian grid of
inputs and a corresponding m×n grid of outputs. If an ex-
periment uses an ANN with hidden nodes, the hidden nodes
are placed in their own two-dimensional layer between the
input and output grids. Recurrence is disabled, so each of
the m × n nodes in a layer has a link of a given weight to
each of the m × n nodes in the proximate layer, excepting
output nodes, which have no outgoing connections. Link
weights can be zero, functionally eliminating a link.

The inputs to the CPPNs are a constant bias value and
the coordinates of both a source node (e.g., x1 = 0, y1 = 0)
and a target node (e.g., x2 = 1, y2 = 1) (Figure 4). The
CPPN takes these five values as inputs and produces one
or two output values, depending on the ANN topology. If
there is no hidden layer in the ANN, the single output is
the weight of the link between a source node on the input
layer and a target node on the output layer. If there is a hid-
den layer, the first output value determines the weight of the
link between the associated input (source) node and hidden-
layer (target) node, and the second output value determines
the weight of the link between the associated hidden-layer
(source) node and output-layer (target) node. All pairwise
combinations of source and target node coordinates are it-
eratively passed as inputs to the CPPN to determine the
weight of each ANN link. HyperNEAT can thus produce
patterns in weight space similar to the patterns it produces
in two-dimensional pictures (Figure 3).

An additional novel aspect of HyperNEAT is that it is
one of the first neuroevolutionary algorithms capable of ex-
ploiting the geometry of a problem [7, 10, 11, 30]. Because
the connection weights between nodes are a function of the
geometric positions of those nodes, if those geometric posi-
tions represent aspects of the problem that are relevant to its
solution, HyperNEAT can exploit such information. For ex-
ample, when playing checkers, the concept of adjacency (on
the diagonals) is important. Connection weights between

Figure 3: Images Evolved with CPPNs. Displayed are
pictures from picbreeder.org [25], a website where visitors
select images from a population evolved with the CPPN
indirect encoding, which is also used in HyperNEAT. The
bottom row shows images from a single lineage. Arrows
represent intermediate forms that are not pictured.



Figure 4: HyperNEAT Produces ANNs from CPPNs.
Weights are specified as a function of the geometric coordi-
nates of the source node and the target node for each connec-
tion. The coordinates of these nodes and a constant bias are
iteratively passed to the CPPN to determine each connec-
tion weight. If there is no hidden layer, the CPPN has only
one output, which specifies the weight between the source
node in the input layer and the target node in the output
layer. If there is a hidden layer in the ANN, the CPPN typ-
ically has two output values, which specify the weights for
each connection layer. Alternatively inputs may be added to
designate the z coordinates for the source and target nodes.

neighbouring squares may need to be different than weights
between distant squares. HyperNEAT can create this kind
of connectivity motif and repeat it across the board [10, 11].
Producing such a regularity would be more difficult with an
encoding that does not include geometric information, be-
cause there would be no easy way for such an algorithm to
identify which nodes are adjacent.

Variation in HyperNEAT occurs when mutations or cross-
over change the CPPNs. Mutations can add a node, which
results in the addition of a function to the network, or change
its link weights. Typical functions for CPPNs are sine, sig-
moid, Gaussian, and linear. The evolution of the population
of CPPN networks in HyperNEAT occurs according to the
principles of the widely used NeuroEvolution of Augmenting
Topologies (NEAT) algorithm [31]. NEAT, which was orig-
inally designed to evolve ANNs, can be fruitfully applied to
CPPNs because a population of CPPNs is similar in struc-
ture to a population of ANNs.

The NEAT algorithm contains three main components [31,
32]. First, it starts with small genomes that encode sim-
ple networks and slowly complexifies them via mutations
that add nodes and links to the network. This complexi-
fication enables the algorithm to evolve the network topol-
ogy in addition to its weights. Second, NEAT implements
a fitness-sharing mechanism via a speciation method that
preserves diversity in the population and allows new inno-
vations time to be tuned by evolution before forcing them
to compete against rivals that have had more time to ma-
ture. Finally, historical information stored in genes helps to
perform crossover in a way that is effective, yet avoids the
need for expensive topological analysis. A full explanation
of NEAT can be found in Stanley & Miikkulainen [31].

Our implementation of HyperNEAT differs in three ways
from the original. First, speciation is implemented with a
K-means clustering method. Second, in the original NEAT
algorithm nodes are only added by splitting an existing con-
nection, but in our implementation nodes could also be add-

ed anywhere along with two new connections to connect it
to the existing network. Third, in the original formulation
of HyperNEAT a connection is not expressed if the magni-
tude of the weight output of the CPPN is below a threshold,
but in an extension called Link Expression Output (LEO)
a separate output is used to determine whether a connec-
tion should be expressed. This method is employed in this
case study. The key insight of LEO is that it makes it eas-
ier to evolve the pattern of which connections should exist
independently from the pattern of weight values [35].

3.4 Synaptic Plasticity Parameter Classes
Rather than encoding each parameter of the synaptic plas-

ticity model for each individual connection, we take the same
approach as Stanley et al. [28], in which the genome de-
fines the parameter values for several plasticity rules, or
classes, and then encodes which rule each connection ref-
erences. Two benefits of this approach are that it reduces
the overall search space and the classes can be optimised
separately from the genes that determine which class a con-
nection belongs to. Additionally, this approach bears some
resemblance to natural neural networks, which tend to have
numerous, but specific, types of neurons, neurotransmitters,
and synapses that perform different functions [3, 4, 14, 36].

Unlike the model in [28], which is based on a direct en-
coding, we adapt the approach to HyperNEAT by evolving
CPPNs that have n+1 outputs that specify the class for a
connection or a special no plasticity class, where the num-
ber of classes is n. This approach is employed for all plastic
neural network models considered in this case study.

3.5 Experimental Details
For each treatment 50 runs of evolution are performed,

with each run lasting 2000 generations. At the start of a
run multiple environment configurations are generated – as
determined by the environment configurations difficulty di-
mension setting – which are used throughout that run.

Each run starts with a different random seed, however the
random seed used to generate environment configurations at
the start of a run varies only as a function of the run number
within a treatment. Thus for a given set of environment
generation parameters, such as the number of states and
actions, the same environment configurations are generated
for the same run number for each of the different neural
network model treatments. This allows a more direct and
fair comparison between treatments.

The parameter settings for HyperNEAT are similar to
those in [30] except for the following differences: the pop-
ulation size is 1000; the K-means speciation method uses
32 clusters; the available functions for CPPNs are Sigmoid,
Gaussian, Sine, absolute, ramp, linear, and sign; the proba-
bilities of adding a CPPN node by replacing an existing con-
nection or adding a node with two new connections are both
0.02; and CPPN weights are mutated with 0.15 probability
by perturbation from a normal distribution with σ=0.3.

Evolved neural networks consist of an input layer, a hid-
den layer and an output layer, with the input and output
layer sizes based on the number of states and number of ac-
tions that the generated environments are composed of (Fig-
ure 5). The networks are potentially fully recurrent within
and between all layers, except the input layer, with LEO
determining whether a potential connection is expressed.



Figure 5: Neural Network Topology for All Exper-
iments. S and A are the number of states and actions in
the environment respectively.

All software, experiment settings, and data are available
upon request or at http://ojcoleman.com/publications.

4. RESULTS AND DISCUSSION
We test the performance of three neural network mod-

els over automatically generated environments that sweep
across three difficulty dimensions. Each dimension is scaled
from easier to harder (Figure 6). We compare how the net-
work models respond to changes in each difficulty dimension
and across the difficulty dimensions. All statistical analyses
in this case study are performed with R’s Mann–Whitney–
Wilcoxon rank sum test.

Across all difficulty dimensions, when the difficulty pa-
rameter is greater than or equal to 4, the Plastic-Weight
and Modulated Plasticity models significantly outperform
the Fixed-Weight model in nearly all cases (p < 0.01).

Interestingly, the Modulated Plasticity model does not
typically perform significantly better than the Plastic-
Weight model, and in fact the Plastic-Weight model sig-
nificantly outperforms it when the number of actions is in-
creased to 8 and beyond (p < 0.001; Figure 6b). The only
case where the Modulated Plasticity model significantly out-
performs the Plastic-Weight model (p < 0.05) is when the
number of environment configurations is 16 (Figure 6a).

The results reveal differences between the neural network
models that are not obvious without sweeping across these
dimensions of difficulty. For example, as the number of ac-
tions is increased, the performance of the Modulated Plastic-
ity model and the Plastic-Weight model diverge drastically,
whereas these two models perform almost identically when
sweeping across the other two dimensions of difficulty.

If we were to compare these neural network models over
any one difficulty dimension, then very different conclusions
could be drawn from the results. For example, if the num-
ber of actions is not considered then we may have drawn
the general conclusion that the Modulated Plasticity and
Plastic-Weight models are very similar in performance, and
alternatively if only the number of actions are considered
then we could draw the conclusion that, given a sufficient

number of actions, the Plastic-Weight model outperforms
the Modulated Plasticity model.

Similarly, if we compare these neural network models over
any one difficulty parameter value then very different con-
clusions could be drawn from the results. For example, if
only a difficulty parameter value of 4 is studied, we may
draw the general conclusion that the Plastic-Weight and
Modulated Plasticity models do not perform significantly
differently. However if we study a difficulty parameter value
of 8 only, then we may draw the conclusion that, at least
in some cases, the Plastic-Weight model significantly out-
performs the Modulated Plasticity model. More generally,
without a wide sweep beyond 4 available actions the drastic
difference between the Plastic-Weight and Modulated Plas-
ticity models is not evident. Even a seemingly wide sweep
of 2, 3, 4 and possibly even 5 available actions may not show
the difference between the two models.

Another interesting performance difference that emerges
between the different environment difficulty dimensions is
that increasing the trial length beyond 4 does not affect the
performance of any of the neural network models very much.
On the other hand, increasing the number of environment
configurations beyond 4 greatly reduces the performance of
every neural network model. Thus if we do not sweep over
all of these environment difficulty dimensions we may arrive
at very different conclusions about how the performance of
all neural network models are affected by increases in the
difficulty of the environments.

These kinds of difficulty dimensions and difficulty param-
eter settings are reminiscent of those chosen in previous re-
search on evolving plastic neural networks that learn during
their lifetime [2, 6, 15, 17, 21–23, 26, 28, 33] in terms of the
size of the memory requirements, kinds of environment ex-
ploration strategies, and complexities of behaviour required.
For example, increasing the T-maze environment from a sin-
gle T-maze, which can be solved with 2 fixed behaviours, to
the double T-maze [26], which requires 4 fixed behaviours.
Thus the results from the case study presented in this paper
are relevant to the kinds of tasks and environments employed
in our field to assess, and draw conclusions about, the learn-
ing capabilities of new models and algorithms. The results
of this case study strongly suggest that a more rigorous as-
sessment of learning capabilities, such as that provided by
the automated environment generation method introduced
in this paper, is not only useful but perhaps necessary to
gain a more accurate picture of learning capabilities.

5. FUTURE WORK
While the scope of this paper is to introduce the au-

tomated environment generation method, in future work
we will use this method to rigorously assess and analyze
the performance characteristics of existing models and algo-
rithms. For example, in the case study in this paper, the
Modulated Plasticity model did not outperform the Plastic-
Weight model. Testing many variants of these two models
across different difficulty dimensions will allow us to better
understand why.

The case study in this paper sweeps across only three of
many possible difficulty dimensions, and studies only three
neural network models. Future work will explore other dif-
ficulty dimensions and include more models and algorithms.
We will also study not just environments that change within
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Figure 6: Performance of the three neural network models over sweeps across three difficulty dimensions
in automatically generated environments. The median performance (±95% bootstrapped confidence intervals) of the
best performing neural network from the final generation over all runs are shown. Statistical significance is indicated by
> (p < 0.05), >> (p < 0.01) and >>> (p < 0.001).

a generation, but also environments that change across gen-
erations.

The discrete MDP environment in this paper cannot rep-
resent many real-world tasks. Two reasons are the inability
to accurately represent continuous values and a lack of en-
vironment dynamics: environment states that change over
time due to the laws of physics. Another direction for fu-
ture work is adding the ability to automatically generate
environments with continuous values and such physical dy-
namics. More generally, being able to automatically gen-
erate a broader class of environments will further increase
our ability to assess the general properties of models and
algorithms.

6. CONCLUSION
In this paper we have introduced a method for automat-

ically generating environments for which the difficulty can
be scaled in many dimensions. This method makes it eas-
ier to conduct a more rigorous assessment of the learning
capabilities of agents that perform intra-life learning. The
automated environment generation method addresses three
key issues: (1) any single environment is potentially open
to bias towards or against certain kinds of models and algo-
rithms; (2) manually creating environments is labour inten-
sive, at best taking time away from focusing on other aspects
of research and, at worst, meaning that sweeps across key
difficulty dimensions are not performed; and, most signifi-
cantly (3) testing new models and algorithms on one or a
few environments provides only a small sample size that may
prevent accurate general conclusions from being drawn.

The utility of automated environment generation is not
limited to assessing the learning capabilities of evolved
agents or agents based on neural networks. Rather, the au-
tomated environment generation method could be applied
to assessing the learning capabilities of any kind of agent
that is able to operate in MDP environments, regardless of
how the agent is developed or what kind of learning model
the agent is based on. Thus the automated environment

generation method presented in this paper has a potentially
broad applicability to the field of artificial intelligence, and
may ultimately accelerate the rate at which we discover how
to create general purpose AI.

References
[1] D. Ackley and M. Littman. Interactions between learn-

ing and evolution. Artificial life II, 10, 1991.

[2] J. Baxter. The evolution of learning algorithms for ar-
tificial neural networks. Complex Systems, 1993.

[3] G. Bi and M. Poo. Synaptic modifications in cultured
hippocampal neurons: Dependence on spike timing,
synaptic strength, and postsynaptic cell type. J. Neu-
rosci., 18(24):10464–10472, Dec. 1998.

[4] R. Cantrup, R. Dixit, E. Palmesino, S. Bonfield,
T. Shaker, N. Tachibana, D. Zinyk, S. Dalesman, K. Ya-
makawa, W. K. Stell, R. O. Wong, B. E. Reese, A. Ka-
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