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Abstract—Ongoing, rapid advances in three-dimensional (3D)
printing technology are making it inexpensive for lay people to
manufacture 3D objects. However, the lack of tools to help non-
technical users design interesting, complex objects represents a
significant barrier preventing the public from benefiting from 3D
printers. Previous work has shown that an evolutionary algorithm
with a generative encoding based on developmental biology–a
compositional pattern-producing network (CPPN)–can automate
the design of interesting 3D shapes, but users collectively had
to start each act of creation from a random object, making
it difficult to evolve preconceived target shapes. In this paper,
we describe how to modify that algorithm to allow the further
evolution of any uploaded shape. The technical insight is to inject
the distance to the surface of the object as an input to the
CPPN. We show that this seeded-CPPN technique reproduces the
original shape to an arbitrary resolution, yet enables morphing
the shape in interesting, complex ways. This technology also raises
the possibility of two new, important types of science: (1) It could
work equally well for CPPN-encoded neural networks, meaning
neural wiring diagrams from nature, such as the mouse or human
connectome, could be injected into a neural network and further
evolved via the CPPN encoding. (2) The technique could be
generalized to recreate any CPPN phenotype, but substituting a
flat CPPN representation for the rich, originally evolved one. Any
evolvability extant in the original CPPN genome can be assessed
by comparing the two, a project we take first steps toward in this
paper. Overall, this paper introduces a method that will enable
non-technical users to modify complex, existing 3D shapes and
opens new types of scientific inquiry that can catalyze research
on bio-inspired artificial intelligence and the evolvability benefits
of generative encodings.

I. MOTIVATION AND PREVIOUS WORK

Recent advances in 3D printing technology have captivated
hobbyists and spurred the desktop fabrication movement [22].
Current applications of desktop 3D printing include the pro-
duction of tools, jewelry, art and prototypes. While these
advances have empowered do-it-yourself communities, the
ability to design complex 3D objects still presents a challenge
to non-technical users [22]. Because traditional 3D design tools
have steep learning curves, simplifying the design process
would increase the ability of the public to use and benefit
from 3D printers [22].

There is a long history of evolving 3D shapes, but early
encodings tend to produce overly regular, blocky or recursive
designs, and do not abstract the way that natural animals
develop [3], [32], [18], [21]. Clune and Lipson [7] showed
that complex, interesting shapes could be evolved with the
CPPN generative encoding [26], which is based on principles

Fig. 1. Example objects evolved on EndlessForms.com.

from developmental biology [4]. Clune et al. then built a
website called EndlessForms.com that allowed web visitors
to collectively explore the space of CPPN-encoded objects
via interactive evolution: users select the objects they are
interested in, which serve as parents for the next generation [7].
To date, over 50,000 visitors from over 150 countries have
evaluated nearly 4 million objects, demonstrating the sizable
public interest in tools that can automate the design of 3D
objects. The shapes produced via this crowdsourced experi-
ment are complex and interesting (Fig. 1). They often look
natural or engineered because they display regularities such
as symmetry and repetition, with and without variation, which
are hallmark properties of the CPPN encoding [26], [9], [7].
The results of the EndlessForm.com experiment echo those of
Picbreeder.com, which was an earlier website that enabled the
crowdsourced exploration of CPPN-encoded images [25].

While EndlessForms.com does allow users to further
evolve objects that others have published, ultimately every ob-
ject on the site started from a random CPPN genotype. By far,
the most commonly requested feature by EndlessForms.com
users is to be able to upload any shape and further evolve it.
One reason that request is so popular is that it is difficult to
evolve toward a predefined target because the stepping stones
to a given target are not obvious and the path to it is extremely
difficult for humans or machines to discover [20], [33]. There
is thus a need for a technique that will enable users to upload



an arbitrary object and further evolve it.

It is easy to allow users to further evolve objects that
were evolved with CPPNs, since the CPPN genome for such
objects is available, but it is not obvious how to allow users to
further evolve arbitrary, non-evolved objects. One idea would
be set the uploaded object as a target, and select for CPPN-
encoded shapes that increasingly resemble the target. That
approach works somewhat for simple 3D shapes [7] and 2D
images [33], but fails completely once the target is even
slightly complex [33]. In the next section we describe an
alternate method that allows the creation of a CPPN-encoded
object for any shape, not by evolving toward a target, but by
directly injecting the geometry of a target into the genome and
thus allowing evolution to immediately start from that target.

II. METHODS

A. Compositional Pattern Producing Networks

Because CPPNs have been repeatedly described in de-
tail [7], [26], [27], [9], here we provide only a brief summary
that is adapted from Clune and Lipson 2011 [7]. CPPNs ab-
stract the natural processes of developmental biology without
simulating the diffusion of chemicals [26]. In nature, the cells
of organisms differentiate into different types, such as eye or
skin cells, based on where they are located geometrically in
the body [32]. To inform cells of their geometric position,
processes unfold during development that create gradients
of chemical morphogens that tell cells where they are and,
therefore, what to become [32]. The anterior-posterior and
dorsal-ventral axes in animals are often originally described
via morphogen gradients provided by the mother. Genes in
the embryo use these simpler gradients to create different,
often more complex, geometric morphogen patterns, which
become the inputs to genes that produce even more complex
downstream patterns. This process allows the generation of
arbitrarily complex geometric patterns that ultimately specify
cell differentiation [32], [4].

CPPNs abstract this process by composing geometric pat-
terns out of other geometric patterns. For computational effi-
ciency, the patterns are represented mathematically instead of
by simulating diffusing chemicals. A few simple gradients are
provided to represent maternally-provided seed gradients. The
final output patterns of a CPPN specify phenotypic attributes,
and thus do so as a function of the different geometric locations
of those phenotypic components. To encode a two-dimensional
picture, for example, the coordinates of each pixel (e.g. x = 4,
y = 7) are iteratively passed into a CPPN genome and the
color of each pixel is determined by the corresponding CPPN
outputs (Figure 2).

CPPNs are directed graphs where every node is a simple
math function (e.g. Gaussian). These node functions can pro-
duce desirable phenotypic properties, such as repetition (e.g.
a sine function) and symmetry (e.g. a Gaussian function).
CPPNs can combine coordinate frames by composing func-
tions of other functions. For example, a sine function early in
the network could create a repetitive motif that can be input
into a symmetrical Gaussian function to create a symmetrical,
repeating pattern (Figure 2). This process can create geometric
patterns of arbitrary complexity, as in the natural processes
involved in biological development [32].

Fig. 2. CPPNs create regularities, such as symmetries and repeated motifs,
with and without variation, by composing math functions out of the outputs
of upstream functions within the network. Adapted from Stanley (2007).

The weights between nodes within CPPNs increase or
decrease the values passed from node to node, just like with
neural networks. Mutations altering these weights can thus
enhance or diminish the influence of various patterns within
the network.

During evolution, CPPNs experience crossover and muta-
tions, the latter of which can add nodes or alter weights. The
base functions for CPPN nodes in this study are sine, sigmoid,
Gaussian, and linear. The population of CPPN networks are
evolved with the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm [28]. NEAT consists of three key principles
[28]. (1) Genomes start with no hidden nodes and such nodes
are added across generations via mutation. This process, called
complexification, means that the complexity of patterns tends
to increase across generations. (2) NEAT encourages diversity
in the genotype space, protecting new genotypic innovations.
(3) NEAT matches up homologous genotypic structure before
crossover.

B. Encoding 3D Objects with CPPNs

Following [7], to evolve 3D objects, inputs for the x,
y, and z dimensions are provided to a CPPN, along with
additional inputs that were experimentally found to be help-
ful, specifically the Euclidean distance from center and the
Euclidean distance from center in each of the xy, yz, and xz
planes. The experimenter defines a workspace–the maximum
size of an object—and its resolution (the number of voxels
in each dimension). In this study there are 20 voxels in
each of the x, y and z dimensions. Voxels are considered
full if the CPPN output for that voxel is greater than a
threshold (here, 0.2), otherwise the voxel is left empty. The
resulting array of voxels is then processed by the Marching
Cubes algorithm [23], which smooths the surface. A normal
is provided for each vertex, which the WebGL visualization
engine uses to further smooth the object’s surface. Thus, high-
resolution CPPN objects can be visualized without extreme
computational costs. All experimental parameters in this paper
are identical to those in [7], although the presented technique
is independent of, and thus will work with, any evolutionary
parameters.



Fig. 3. A CPPN genome specifying an uploaded shape. In addition to the traditional x, y, z, and other inputs (see text), to specify an uploaded shape a
distanceFromSurface (ds) input is added that informs the CPPN of the proximity of each voxel to the shape surface. Distances are negative outside the shape
and positive inside. The CPPN output determines whether a voxel is present at each location based on these inputs. The centermost, contiguous cluster of voxels
(shown as red voxels) is then smoothed by Marching Cubes [23] and WebGL. Genomes start with no hidden nodes, but can gain them via mutations.

This method of encoding 3D objects with CPPNs is used in
EndlessForms.com [7] and is an extension of how 2D pictures
are encoded with CPPNs on Picbreeder.com [26], [25]. It has
also been used to evolve soft robots composed of multiple-
materials [5]. Like most CPPN-encoded phenotypes, there is
no growth process, unlike a different proposal for evolving
3D CPPN objects that produced shapes composed of attached
spheres of different sizes [2], [1].

C. Seeding CPPNs

No previous method exists for starting evolution with a
generative encoding from a complex shape, although seeding
musical motifs has been investigated [17], [10]. Previously,
researchers set an object as a target and hoped evolution could
produce it, at which point that object could be further evolved:
that method fails for all non-trivial targets [33], [7]. One novel
attribute of the CPPN encoding is that it is ‘geometrically
aware’, meaning that it specifies phenotypic attributes as a
function of their geometric location [26], [8], [9], [15]. That
enables generating a CPPN-encoded replica of an arbitrary
shape by making the CPPN aware of the geometric shape to be
replicated. One way to start from a complex design would be to
evolve a CPPN object and then add or subtract it to the desired
shape (e.g. an evolved cylinder in the right location could
be added to Pinocchio to lengthen his nose). This technique
allows additions or ablations to a shape, but does not allow the
original shape to be scaled, warped, extended, or deformed in
interesting ways. Another approach is to provide an input bit
that would be on for every voxel in the shape, but that method
similarly does not allow the shape to be scaled, transformed,
or warped, since voxels close to the surface of the shape would
not be distinguishable from voxels farther away. Instead, the
key is to let the CPPN know the distance between each voxel
and the surface of the shape, as well as whether the voxel is
inside or outside the shape, which enables the CPPN to scale
and deform the shape in arbitrary ways.

We define the seed object as the object to be replicated
and the seeded-CPPN-object as the resulting CPPN-based

replica object. To produce a seeded-CPPN-object, we add a
distanceFromSurface CPPN input. For each voxel, this input
value, ds, is the shortest distance from that voxel to the surface
of the seed object, and is negative if outside the shape and
positive if inside. Thus, ds input values increase closer to an
object’s surface and are maximal at the object’s center.

For each seed object, the ds inputs are pre-calculated
once for every voxel in the workspace and are stored for
use throughout evolution. Objects are scaled to fit into the
workspace and are represented as a set of triangles that form
the surface of the object, from which an AABB tree is
constructed. An AABB tree is a hierarchical decomposition
of an object’s bounding box into axis-aligned bounding boxes
(AABBs), which each contain a triangle [13]. Arranging
AABBs in a tree logarithmically reduces the number of inter-
section tests necessary for calculating the distance from each
voxel to the object surface. This process is computationally
expensive for high resolutions, but has to be performed only
once per uploaded shape and workspace resolution. For exam-
ple, for a relatively low-resolution shape consisting of 5512
triangles and a 203 workspace, 8000 distance calculations were
performed on a modern computer in 87 seconds. Experiments
were conducted within the EndlessForms.com code base and
viewed in the Chrome browser, which displays and smooths
objects via WebGL. Figure 3 illustrates the process.

In addition to the ds input, traditional CPPN inputs such as
x, y, and z are included to allow evolution to morph the orig-
inal shape by incorporating influence from other dimensions.
For example, adding x to the ds input could cause the original
shape to be recognizable, but get larger from left to right.

Initial seeded-CPPN genomes have no hidden nodes, but
complexify via the NEAT algorithm. Typically, the initial
weights between input and output nodes are randomized [26],
[27], [9], [7]. However, we discovered that random weights
often led to a few strong weights from input dimensions other
than ds, which masked the signal coming from the shape
and made the result unrecognizable. To ensure that objects
would initially resemble their respective seed objects, we set



Fig. 4. For any uploaded shape (top row), a seeded-CPPN can be created that
produces a similar replica shape (bottom row). Inaccuracies occur due to low
workspace resolution, but can be remedied with higher resolutions (Fig. 5).
Seed objects in the top row are visualized in an STL viewer; seeded-CPPN-
objects in the bottom row are visualized in the Chrome browser.

the weight between the ds input and the output node to a
high value (experimentally chosen to be 1.16) and initialized
all other weights to zero. All weights were free to change
via mutation and selection during evolution. Mutations during
evolution can mask or even ignore the original shape, but the
user can simply not select such individuals.

III. RESULTS

A. Ability to generate arbitrary objects

The Seeded-CPPN technique can produce CPPN-encoded
objects that resemble the seed object. To demonstrate this
result, we uploaded different designs to our software in STL
(STereoLithography) format, the standard file type for 3D
objects. We found that every shape we tried could be rep-
resented by a CPPN to a high degree of accuracy (Fig. 4).
It appears that any 3D shape can be created, and we are
unaware of any a priori reason why certain shapes would
be unreproducible, but future work is needed to test this
expectation. For computational reasons, our default resolution
was sometimes too low to capture every feature of the seed
object, resulting in a lower-resolution representation of the
object that lacked some of its features (e.g. the eyes of the
octopus in Fig. 4). This appears to be the main, and possibly
only, source of inaccuracy.

To test whether seeded-CPPNs could increasingly capture
finer features of seed objects as the workspace resolution
increased, we applied the technique to the same object, but
at increasing workspace resolutions. We found that higher
workspace resolutions produce higher fidelity objects that
captured increasingly fine details of the seed object (Fig. 5).
This result is encouraging because as computers continue to
increase in speed, higher fidelity seeded-CPPN-objects will
become feasible. The computational cost increases linearly
with the number of voxels (Fig. 5).

B. Evolving seeded-CPPN-objects

We evolved many different seeded-CPPN-objects, and
found that evolution with the CPPN encoding can produce a
variety of changes to the original shape while still preserving
that shape, or at least retaining some of its properties (Figs. 6
and 7). Importantly, the CPPN encoding allows the various
input dimensions to have differing influences on the design.
This enables a host of regular transformations of the seed

Fig. 5. Increasing the workspace resolution enables higher fidelity replications
of the seed object. Computational costs increase linearly with the number of
voxels. Left: the default resolution of 20×20×20 = 8000 voxels (requiring 87
seconds) . Middle: 403 = 64000 voxels (694 seconds) . Right: 803 = 512000
voxels (5453 seconds) . All other images in this paper are at the default 203
resolution due to computational costs.

Fig. 6. Evolved descendants of an uploaded object (the statue given out at
the Oscars). The seed object, viewed in an STL viewer, is shown in the top
left. To its right is the recreated version encoded by a CPPN. The middle
and bottom rows contain objects that were evolved from that seeded-CPPN-
object. Example descendants here, and elsewhere in the paper, are chosen
from the first 35 generations, usually from the first 5-10, with the seeded-
CPPN object counting as generation 0. Note the presence of both symmetric
and asymmetric alterations, as well as scaling and more complex, unexpected
variations. Complexification over time is also evident: the bottom-row objects
are from later generations than those in the middle row, and their extra hidden
nodes increase their difference from the ancestor.

object, such as the left-to-right and right-to-left deformation
seen in the left two columns of the middle row of Fig. 6. The
original object can also be scaled, as seen in the two different
scales portrayed in the right two columns of the middle row
of that figure.

The bottom row of Fig. 6 shows more complex transforma-
tions. The left column likely resulted from a reduction in scale,
which eliminated the legs of the statue and part of the base. The
object to its right demonstrates that CPPNs can alter one shape
into a completely different one, which is an important trait
for an encoding [29]. Interestingly, the first author was once
challenged by an organization that had a martini glass logo to



Fig. 7. Evolving the Kool-Aid man. The original STL version is in the top
left, with the CPPN recreation to its right. The bottom row shows evolved
descendants. These shapes—which resemble watering cans, aliens, piggy
banks, and clay jugs—demonstrate that evolution can make non-trivial changes
to seeded-CPPN-objects.

evolve a martini glass on EndlessForms. The attempt failed,
even when the author used available designs on EndlessForms
as starting points. Here, unexpectedly, something resembling
a martini glass emerged. This serendipitous discovery under-
scores that the stepping stones that may lead to a particular
target are not obvious ahead of time [33].

The third column of the bottom row of Fig. 6 reveals a
mutation that eliminated much of the radial symmetry of the
statue, stretching it along one plane. The result makes the
statue appear fatter and to have clown shoes. Such interesting
and even humorous alterations are the sort of spontaneous
creativity that delight users in systems that help automate
design. The bottom right object in Fig. 6 also shows evolution’s
ability to surprise. It uses the mathematical description of the
statue to create something entirely different, yet non-trivial.

Fig. 7 also shows complex, unexpected, interesting variants
of an uploaded object: the Kool-Aid man. From that iconic
starting place, objects that are clearly descendant, but also
quite different, evolve. Objects that resemble watering cans,
aliens, piggy banks, and clay jugs were just some of the
many fascinating designs evolved. Interestingly, some of these
deformations are the sort of changes a human would make,
such as elongating the Kool-Aid Man’s tubular legs into
feet, but are not trivial extensions of the original design.
Of course, humans are doing the selecting, but the encoding
has to generate such variation in the first place. Generating
interesting, nuanced variation has historically been difficult,
even during interactive evolution, because of less sophisticated
encodings or symbolic encodings where one mutation often
radically alters the phenotype [26], [29], [7], [25].

Because NEAT increases complexity over time by adding
hidden nodes to CPPN genomes, the shapes become more
complex, and different, across evolutionary time. This can
be seen in Fig. 6. Objects in the middle row are from early
generations (generation 10 or before), whereas objects in the
bottom row are from later generations (generation 20 or later).
These evolved objects validate that many of the key properties
of CPPN-NEAT, such as complexification and the generation
of complex regularities, occur in these objects. Such properties
have previously been shown to be important aesthetically [25],
[7] and for performance, such as when CPPNs encode neural

networks [26], [27], [9], [8], [14], [15].

IV. DISCUSSION AND FUTURE WORK

A. Qualitative vs. Quantitative Results

The purpose of this paper is to introduce a technique
showing that it is possible to start evolution from a complex
3D shape, instead of always starting from random genomes.
A common reaction to this type of research is to ask whether
the new technique can be quantifiably shown to be better than
some previous technique. For example, one could see whether
the Seeded-CPPN technique reproduces targets with less error
than an alternate method, such as trying to evolve a target via a
fitness function based on target-reconstruction error. We do not
make such a comparison for a number of reasons. First, there
is no other method that we are aware of to start evolution with
generative encoding from a specific, complex target shape.
Second, because the Seeded-CPPN technique can represent a
3D pattern to an arbitrary degree of precision (Fig. 5), the
error between the object and the target can be tuned toward
zero by increasing the resolution, which makes quantifying
that error uninteresting. Techniques that do involve significant
error, such as target-oriented evolution, would clearly not
compete. Third, it has been shown that setting a target for
evolution and having it try to evolve to produce that target
fails for all but the simplest pictures and objects, such as
three overlapping spheres [33], [7]. There is thus no reason to
believe that target-based evolution can evolve more complex
shapes like the fox, octopus, teapot, Kool-aid man, Mario,
and the other shapes replicated earlier (Figs. 4,5,6,7). CPPNs
even fail to evolve targets that were originally evolved with
CPPNs [33], revealing that target-based evolution is unlikely
to compete with the Seeded-CPPN technique, even to produce
CPPN-evolved objects such as the “Angel with Halo” (Fig. 8).
Quantitative comparisons are therefore unlikely to further our
understanding of the advance that seeded-CPPNs yield in terms
of beginning evolution from a complex starting point.

Another reason quantifiable results are not the best way
to understand the Seeded-CPPN technique is because humans
are far better than computers at recognizing visual patterns.
Scientists can learn a lot from visual domains that cannot be
easily quantified. In fact, the CPPN encoding itself, as well as
Novelty Search, were invented as a direct result of investiga-
tions in visual, non-numerical domains like Picbreeder [26],

Fig. 8. An object originally evolved on EndlessForms.com that, for this study,
is further evolved with its original CPPN genome and with a genome created
via the Seeded-CPPN technique.



Fig. 9. A comparison of evolutionary variation produced when evolving the “Angel with Halo” object from EndlessForms (Fig. 8) with two different CPPN
representations: its original rich CPPN genome and a flat CPPN genome produced by the Seeded-CPPN technique. Overall, the original CPPN genome produces
more substantial changes across generations, although its designs are still interesting instead of random. The seeded-CPPN lineages feature less change overall,
but still produce interesting variation on the ancestral shape. In some cases, however, the changes produced by the seeded-CPPN encoding are quite striking, as
in the center object that resembles a sculpture of a muscular human torso. Note: For space limitations, per generation, only three representative objects of the 15
total are shown that evolved at or before that generation. All 15 objects per generation are visible at the following link: http://dx.doi.org/10.5061/dryad.4qk42

[20], [25]. As scientists, we should not categorically preclude
ourselves from the valuable insights visual domains have to
offer just because they resist quantification.

In addition to introducing the Seeded-CPPN technique and
documenting that it allows evolution to start from complex
targets, an additional focus of this paper is to discuss new
types of scientific inquiry that the Seeded-CPPN technique
enables, which can produce important, quantifiable data in
future studies. We discuss those possibilities next.

B. Evolvability

One of the goals of research into generative encodings
is to improve evolvability—the speed with which adaptation
occurs [24], [29]. It is hypothesized that in nature, evolu-
tion discovers types of variation that tend to produce more
adapted offspring, and thus evolvability increases across gen-
erations [31], [30], [24]. For example, if it is helpful to have
the size of limbs be correlated, or even symmetrical, evolution
could encode those limbs with the same genes to enforce their
similarity. Generative encodings should similarly learn what
types of variation are helpful, and produce such variation while
avoiding deleterious variants, a process known as canaliza-
tion [29]. It is hypothesized that the CPPN generative encoding
does increase evolvability in this way, but such claims have
previously been difficult to test [26], [9], [7]. The difficulty in
investigating this subject arises because, for any given CPPN-
encoded phenotype, it is difficult to further evolve the object

with and without the representation that evolved inside the
genome. It is thus hard to separate the encoding itself from any
evolvability it learns along the way. Some attempts have been
made to investigate evolvability by comparing a generative
encoding to a direct encoding [9], but such comparisons are
imperfect because the different encodings mean that improved
evolvability itself is not isolated.

The Seeded-CPPN technique for the first time allows
comparisons between phenotypes with identical generative en-
codings that either have, or do not have, extended evolutionary
histories. This is possible because the Seeded-CPPN technique
can generate a CPPN without hidden nodes that encodes for
an object that was originally evolved with the CPPN encoding.
The original may have canalized certain forms of variation,
but such biases would not be present in the seeded-CPPN.
The Seeded-CPPN technique thus allows studies into whether
evolutionary rich encodings are more evolvable than the flat
encodings produced by the Seeded-CPPN-object technique.
The seeded-CPPN genomes are initially flat because they have
no hidden nodes, and no canalization, in contrast to the evolved
CPPN networks that have many hidden nodes that compose
different mathematical regularities in particular, ordered ways.
If evolvability is documented in the rich encodings vs. the flat
encodings in early generations, it will also then be possible to
see how evolvability increases in the (initially) flat encodings
over evolutionary time as they are further evolved and add
hidden nodes.



Protracted studies in this vein are beyond the scope of this
paper and will be explored in future studies. However, we do
take an initial step in that direction. We select an object evolved
with the CPPN encoding on EndlessForms.com, titled “Angel
with Halo” (Fig. 8), and then generate a replica of it via the
Seeded-CPPN-object technique. The evolved genome for this
object from EndlessForms.com has 33 hidden nodes, compared
to the 0 hidden nodes for the seeded-CPPN genome. To explore
the impact of the evolved vs. injected representation, we further
evolve both shapes to see if there are dissimilarities in the
way evolution operates. To eliminate the bias of a human
performing selection, we randomly choose three objects per
generation (out of a possible 15) to be the parents of the
next generation. The results show interesting differences in
how evolution occurs across generations (Fig. 9). The original
CPPN encoding makes larger leaps through phenotype space,
quickly leading to shapes that are interesting, but do not resem-
ble the starting object. Even the shapes in the first generation
are vastly different than their parent organism and no longer
look like an angel, although many retain the humanoid form.
By generation 5, the objects from the original CPPN encoding
seem like druids or aliens. By generation 15 the objects look
like faces or masks, and do not resemble the human body plan.

In contrast, objects evolved with the seeded-CPPN genome
are initially quite similar to the ancestor (Fig. 9). By generation
5, differences are apparent in all objects, but many objects are
noticeably similar to the angel ancestor. One striking exception
is the object that looks like a sculpture of a muscular human
torso (Fig. 9, middle row and column). This object demon-
strates that the seeded-CPPN encoding can produce substantial,
surprising variation. After 15 generations of random selection,
some objects evolved with the seeded-CPPN genome still
resemble humanoids, such as the object that resembles a monk
(Fig. 9, bottom row, right column). Other objects, however, are
quite different, such as the object in Fig. 9’s lower-left corner.

In addition to facilitating evolvability studies with interac-
tive evolution, evolvability can be studied with non-interactive
evolution, such as the evolution of neural networks. Neural
networks have been evolved with the CPPN encoding in
an algorithm called HyperNEAT [27]. Such networks have
generated impressive, high-performing gaits in simulated and
real quadruped robots [9], [6], [19], evolved interesting soft-
robot morphologies [5], performed board evaluations in games
like checkers [16], [15], and effectively controlled robot
swarms [11], [12]. Those neural networks could be stripped
of their internal CPPN genotypic structure by producing a flat
CPPN via the Seeded-CPPN technique. The flat CPPN genome
could then be further evolved on the same or similar tasks.
Performance comparisons between the flat and rich CPPN
genomes would then allow quantifiable, objective experiments
into whether any evolvability was acquired in the original evo-
lutionary run. Such objective studies would not have humans
in the loop, and would thus complement studies done with
humans performing fitness evaluations. If similar results are
observed in both types of studies, we could conclude that
human evaluators are not the driving cause of evolvability
differences. Future work is needed to investigate the degree
to which the Seeded-CPPN technique can produce neural
networks as well as it can 3D objects, but if it proves possible
the ability to investigate evolvability in neural networks would
be enhanced.

C. Seeding Neural Patterns

The benefits of being able to inject a complex geometric
pattern into a CPPN open other new doors in the field of
artificial intelligence. Developments in the technique may
allow any pattern to be seeded into a CPPN, including the
neural wiring diagram of animal brains. ANNs based on the
connectome of mice, humans, and other animals could be
created and then further evolved. It is unlikely that the known
connectome would work “out of the box”, so techniques for
automatically optimizing and adapting it are necessary. CPPNs
are an ideal encoding for such research, since they can scale
to very large neural networks, including those with millions of
connections [27]. It is not currently computationally feasible
to evolve human-scale brains, but smaller animals may be
possible. Many details remain to be worked out regarding
whether and how this technique will work. Instead of providing
a distance to the surface of a shape, for example, a CPPN could
be provided with the distance to biological neural structures
(e.g. neurons, synapses) for each potential neural structure in
an artificial neural network.

If such new types of experiments prove fruitful, the re-
search in this paper with 3D objects may help fuel the in-
tuitions of scientists performing neural network investigations
with the Seeded-CPPN technique. It is helpful to have a visual
testbed with which to understand the types of variation that
are possible with various genetic representations. Researchers
could gain such intuitions with 3D objects and then utilize
that understanding when dealing with high-dimensional spaces
that are difficult to visualize, such as the four-dimensional,
hypercube-encoded neural networks in HyperNEAT.

D. Automating Object Design

The Seeded-CPPN technique could greatly expand the
number of people that can change the objects that surround
them in the world. With 3D printing technology, they can
modify such objects and then easily manufacture them. For
example, on EndlessForms.com, users evolve objects and then
click the “3D print” button, which enables them to have the
company Shapeways print the object and ship it to them for a
small fee. Objects can be printed in a variety of materials, from
gold or glass to silver and sandstone. Many EndlessForms.com
users report liking the ability to print evolved objects, but
would prefer even more to print slightly modified versions of
objects available in online repositories like Thingiverse.com.
In future work we plan to add this functionality to Endless-
Forms.com in order to discover the degree to which users
appreciate and utilize this often-requested functionality. Such
work will shed light on whether users can better accomplish
their goals when starting from a seed, as well as whether
different classes of novel designs emerge when interactive
evolution can start from complex, human-engineered designs.
Additional possibilities are enabled by 3D scanners, which
allow non-technical users to scan everyday objects—or even
themselves—and further evolve them. Finally, the benefits of
automated 3D design are not limited to 3D printing, but can
also create avatars and other objects in virtual worlds.

V. CONCLUSIONS

The Seeded-CPPN technique presented in this paper brings
closer the day in which non-technical users can create and



manufacture any design they wish. By allowing users to further
evolve arbitrary, complex shapes, they can start close to the
goal they have in mind. Evolution can then help them morph
their seed object into their desired goal, or may surprise them
by suggesting a design that is superior or more preferable than
the one they had in mind.

We have shown that it is possible to encode any 3D
object with a CPPN network. Because the CPPN network has
many desirable properties [26], [9], [8], users can harness the
encoding to further evolve any object.

The Seeded-CPPN technique also suggests new scientific
tools. With it, scientists can study whether CPPNs evolve
evolvability. Thus, researchers can learn about the CPPN
encoding in particular, and about the nature of evolvability
itself, which remains a difficult-to-study, yet important, area of
biological research [24], [31], [30]. Additionally, the Seeded-
CPPN technique may one day enable the creation of CPPN-
encoded replicas of natural wiring diagrams, such as those
for animal brains, which could then be further evolved. That
possibility may open new avenues of research in artificial intel-
ligence and computational neuroscience. Overall, the Seeded-
CPPN technique has immediate practical applications in design
automation and introduces new possibilities for research into
generative encodings, evolvability, and artificial intelligence.
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