
Evolving Robot Gaits in Hardware: the HyperNEAT Generative Encoding Vs.
Parameter Optimization

Jason Yosinski1, Jeff Clune1, Diana Hidalgo1, Sarah Nguyen1, Juan Cristobal Zagal2, and Hod Lipson1

1 Cornell University, 239 Upson Hall, Ithaca, NY 14853, USA
2 University of Chile, Beauchef 850, Santiago 8370448, Chile

yosinski@cs.cornell.edu

Abstract

Creating gaits for legged robots is an important task to en-
able robots to access rugged terrain, yet designing such gaits
by hand is a challenging and time-consuming process. In
this paper we investigate various algorithms for automat-
ing the creation of quadruped gaits. Because many robots
do not have accurate simulators, we test gait-learning algo-
rithms entirely on a physical robot. We compare the per-
formance of two classes of gait-learning algorithms: locally
searching parameterized motion models and evolving artifi-
cial neural networks with the HyperNEAT generative encod-
ing. Specifically, we test six different parameterized learning
strategies: uniform and Gaussian random hill climbing, pol-
icy gradient reinforcement learning, Nelder-Mead simplex,
a random baseline, and a new method that builds a model
of the fitness landscape with linear regression to guide fur-
ther exploration. While all parameter search methods outper-
form a manually-designed gait, only the linear regression and
Nelder-Mead simplex strategies outperform a random base-
line strategy. Gaits evolved with HyperNEAT perform con-
siderably better than all parameterized local search methods
and produce gaits nearly 9 times faster than a hand-designed
gait. The best HyperNEAT gaits exhibit complex motion pat-
terns that contain multiple frequencies, yet are regular in that
the leg movements are coordinated.

Introduction and Background
Legged robots have the potential to access many types of
terrain unsuitable for wheeled robots, but doing so requires
the creation of a gait specifying how the robot walks. Such
gaits may be designed either manually by an expert or via
computer learning algorithms. It is advantageous to auto-
matically learn gaits because doing so can save valuable en-
gineering time and allows gaits to be customized to the id-
iosyncrasies of different robots. Additionally, learned gaits
have outperformed engineered gaits in some cases (Hornby
et al., 2005; Valsalam and Miikkulainen, 2008).

In this paper we compare the performance of two dif-
ferent methods of learning gaits: parameterized gaits opti-
mized with six different learning methods, and gaits gener-
ated by evolving neural networks with the HyperNEAT gen-
erative encoding (Stanley et al., 2009). While some of these

Figure 1: The quadruped robot for which gaits were evolved.
The translucent parts were produced by a 3D printer. Videos
of the gaits can be viewed at http://bit.ly/ecalgait

methods, such as HyperNEAT, have been tested in simula-
tion (Clune et al., 2009a, 2011), we investigate how they
perform when evolving on a physical robot (Figure 1).

Previous work has shown that quadruped gaits perform
better when they are regular (i.e. when the legs are co-
ordinated) (Clune et al., 2009a, 2011; Valsalam and Mi-
ikkulainen, 2008). For example, HyperNEAT produced
fast, natural gaits in part because its bias towards regu-
lar gaits created coordinated movements that outperformed
gaits evolved by an encoding not biased towards regular-
ity (Clune et al., 2009a, 2011). One of the motivations of
this paper is to investigate whether any learning method
biased towards regularity would perform well at produc-
ing quadruped gaits, or whether HyperNEAT’s high perfor-
mance is due to additional factors, such as its abstraction
of biological development (described below). We test this
hypothesis by comparing HyperNEAT to six local search al-
gorithms with a parametrization biased toward regularity.

An additional motivation is to test whether techniques for
evolving gaits in simulation, especially cutting-edge evolu-



tionary algorithms, transfer to reality well. Because Hyper-
NEAT gaits performed well in simulation, it is interesting to
test whether HyperNEAT can produce fast gaits for a phys-
ical robot, including handling the noisy, unforgiving nature
of the real world. Such tests help us better understand the
real world implications of results reported only in simula-
tion. It is additionally interesting to test how more traditional
gait optimization techniques compete with evolutionary al-
gorithms when evolving in hardware. A final motivation of
this research is simply to evolve effective gaits for a physical
robot.

Related Work
Various machine learning techniques have proved to be ef-
fective at generating gaits for legged robots. Kohl and
Stone presented a policy gradient reinforcement learning ap-
proach for generating a fast walk on legged robots (Kohl
and Stone, 2004), which we implemented for compari-
son. Others have evolved gaits for legged robots, pro-
ducing competitive results (Chernova and Veloso, 2005;
Hornby et al., 2005; Zykov et al., 2004; Clune et al.,
2009a, 2011, 2009b,c; Téllez et al., 2006; Valsalam and
Miikkulainen, 2008). In fact, an evolved gait was used
in the first commercially-available version of Sony’s AIBO
robot (Hornby et al., 2005). Except for work with Hyper-
NEAT (Clune et al., 2009a, 2011, 2009b,c), the previous
evolutionary approaches have helped evolution exploit the
regularity of the problem by manually decomposing the task.
Experimenters have to choose which legs should be coor-
dinated, or otherwise facilitate the coordination of motion.
Part of the motivation of this paper is to compare the reg-
ularities produced by HyperNEAT to those generated by a
more systematic exploration of regularities via a parameter-
ized model.

Problem Definition
The gait learning problem aims to find a gait that maximizes
some performance metric. Mathematically, we define a gait
as a function that specifies a vector of commanded motor
positions for a robot over time. We can write gaits without
feedback — also called open-loop gaits — as

~x = g(t) (1)

for commanded position vector ~x. The function depends
only on time.

It follows that open-loop gaits are deterministic, produc-
ing the same command pattern each time they are run. While
the commanded positions will be the same from trial to trial,
the actual robot motion and measured fitness will vary due
to the noisiness of trials in the real world.

For the system evaluated in this paper, we chose to com-
pare open-loop gaits generated by both the parameterized
methods and HyperNEAT. An interesting extension would

Figure 2: (a) Top-down perspective of the robot with the
nine joints and associated servos labeled. (b) The robot in a
flat pose with the hip joint centered. (c,d,e) Various views of
a pose in which the hip joint is rotated.

be to allow closed-loop gaits that depend on the measured
servo positions, loads, voltage drops, or other quantities.

The ultimate goal was to design gaits that were as fast
as possible. Our performance metric was thus displacement
over the evaluation period of 12 seconds. Details of how this
displacement was measured are given below.

Experimental Setup
Platform Details
The quadruped robot in this study was assembled from off-
the-shelf components and parts printed on the Objet Connex
500 3-D Printing System. It weighs 1.88 kg with the on-
board computer and measures approximately 38 centimeters
from leg to opposite leg in the crouch position depicted in
Figure 1. The robot is actuated by 9 AX-12+ Dynamixel
servos: one inner joint and one outer joint servo in each of
the four legs, and one servo at the center “hip” joint. This
final unique servo allows the two halves of the robot to ro-
tate with respect to each other. Figure 2 shows this unique
motion, as well as the positions and numerical designations
of all nine servos. Each servo could be commanded to a
position in the range [0, 1023], corresponding to a physical
range [-120◦, +120◦]. The computer and servos can be pow-
ered by two on-board batteries, but for the tests presented in
this paper power was provided by a tethered cable.

All of the computation for gait learning, fitness evalua-
tion, and robot control was performed on the compact, on-
board CompuLab Fit-PC2, running Ubuntu Linux 10.10.



Figure 3: A Nintendo Wii remote provided the location
of the robot by tracking the infrared LED mounted on the
robot’s antenna. The position was measured in pixels and
transmitted from the Wii remote to the robot via bluetooth.

The slowest portion of code was HyperNEAT, which took
less than one second per generation to run (excluding phys-
ical evaluations). Thus, we chose not to offload any com-
putation. All gait generation, learning, and fitness evalua-
tion code, except HyperNEAT, was written in Python and is
available on our website (http://bit.ly/ecalgait). HyperNEAT
is written in C++. We controlled the servos with the Py-
dynamixel library, sending commanded positions at 40Hz.
The robot connected to a wireless network on boot, which
enabled us to control it via SSH.

Robot gaits are defined by a Python gait function that
takes time (starting at 0) as a single input and outputs a list
of nine commanded positions (one for each servo). To safe-
guard against limb collision with the robot body, the control
code cropped the commands to a safe range. This range was
[-85◦, +60◦] for the inner leg servos, [-113◦, +39◦] for the
outer leg servos, and [-28◦, +28◦] for the center hip servo.

Fitness Evaluation Details
To track the position of the robot and thus determine gait
fitness, we mounted a Nintendo Wii remote on the ceiling
and an infrared LED on top of the robot (Figure 3). The
Wii remote contains an IR camera that tracks and reports
the position of IR sources. The resolution of the camera
was 1024 by 768 pixels with view angles of about 40◦ by
30◦, which produced a resolution of 1.7mm per pixel when
mounted at a height of 2.63m. At this height, the viewable
window on the floor was approximately 175 x 120 cm.

A separate Python tracking server ran on the robot and in-
terfaced with the Wii remote via bluetooth using the CWiid
library. Our fitness-testing code communicated with this
server via a socket connection and requested position up-
dates at the beginning and end of each run.

As mentioned earlier, the metric for evaluating gaits was
the Euclidian distance the robot moved during a 12-second
run on flat terrain. For the manual and parameterized gaits,
the fitness was this value. The HyperNEAT gaits stressed
the motors more than the other gaits, so to encourage gaits
that did not tax the motors we penalized gaits that caused
the servos to stop responding. When the servos stopped re-
sponding they could, in nearly all cases, be restarted by cy-
cling power, though over the course of this study we did have
to replace four servos that were damaged. The penalty was
to set the fitness to half of the distance the robot actually
traveled. We tested whether the servos were responding af-
ter each gait by commanding them to specific positions and
checking whether they actually moved to those positions.
This test had the additional benefit of rewarding those gaits
that did not flip the robot into a position where it could not
move its legs, which HyperNEAT also did more than the
other learning methods. Because the fitness of HyperNEAT
gaits were often halved, in results we compare actual dis-
tance traveled in addition to fitness for the best gaits pro-
duced by each class of gait-generating algorithms.

Since only a single point on the robot — the IR LED —
was measured for the purposes of computing fitness, it was
important that the position of the IR LED accurately reflect
the position of the robot as a whole. To enforce this con-
straint, the robot was always measured while in the ready
position (the position shown in Figure 1). This was done
to prevent assigning extra fitness to, for example, gaits that
ended with the robot leaning toward the direction of travel
(this extra distance would not likely generalize in a longer
run, which is why we did not want to reward this behavior).

In order to measure the start and end position in the same
pose, and to ensure fair fitness evaluations with as little noise
as possible, we linearly interpolated the motion of the robot
between the ready position and the commanded gait, g(t).
As shown in Figure 4, the instantaneous robot limb config-
uration during the first and last portions of the evaluation
was an interpolation between the initial ready position and
g(t); during the rest of the evaluation, the robot followed the
commanded gait exactly.

The only human intervention required during most learn-
ing trials was to occasionally move the robot back into the
viewable area of the Wii remote whenever it left this win-
dow. Initially this was a rare occurrence, as the gaits did not
typically produce motion as large as the size of the window
(roughly 175 x 120 cm). However, as gaits improved, par-
ticularly when using HyperNEAT, the robot began to walk
out of the measurement area a non-negligible fraction of the
time. Whenever it did so, we would discard the trial and



Figure 4: Motion was interpolated linearly between a sta-
tionary pose and the commanded gait g(t) for one second
at the beginning of each run and two seconds at the end, as
shown above. The position of the robot was measured at the
beginning and end of each run (red circles) in the ready pose.

repeat it until the gait finished within the window. While
this process guaranteed that we always obtained a measure-
ment for a given gait before proceeding, it also biased some
measurements downward. Because the performance of the
robot on a given gait varied from trial to trial, a successful
measurement was more likely to be obtained when the gait
happened to perform poorly. This phenomenon was negli-
gible at first, but became more pronounced as gaits began
traversing the entire area. HyperNEAT gaits were especially
likely to require additional trials, meaning that the reported
performance for HyperNEAT is worse than it would have
been otherwise. Future studies could employ an array of
Wii remotes to increase the size of the measurement arena.

Gait Generation and Learning
We now describe the classes of gait-generating algorithms.

Parameterized Gaits
By a parameterized gait, we mean a gait produced by a pa-
rameterized function g(t; ~θ). Fixing the parameters ~θ yields
a deterministic motion function over time. We tried several
parametrizations on the robot and, upon obtaining reason-
able early success, settled on one particular parametrization,
which we call SineModel5. Its root pattern is a sine wave
and it has five parameters (Table 1).

Intuitively, SineModel5 starts with 8 identical sine waves
of amplitude α and period τ , multiplies the waves for all
outer motors by mO, multiplies the waves for all front mo-
tors by mF , and multiplies the waves for all right motors by

Parameters
in ~θ Description Range
α Amplitude [0, 400]
τ Period [.5, 8]
mO Outer-motor multiplier [-2, 2]
mF Front-motor multiplier [-1, 1]
mR Right-motor multiplier [-1, 1]

Table 1: The SineModel5 motion model parameters.

mR. To obtain the actual motor position commands, these
waves are offset by fixed constants (CO = 40 for outer mo-
tors, CI = 800 for inner motors, and CC = 512 for the cen-
ter hip motor) so that the base position (when the sine waves
are at 0) is approximately a crouch (the position shown in
Figure 1). To keep the size of the model search space as
small as possible, we decided to keep the ninth (center) mo-
tor at a fixed neutral position. Thus, the commanded posi-
tion for each motor as a vector function of time is as follows
(numbered as in Figure 2):

~g(t) =



α · sin(2πt/τ) ·mF +CI

α · sin(2πt/τ) ·mO ·mF +CO

α · sin(2πt/τ) +CI

α · sin(2πt/τ) ·mO +CO

α · sin(2πt/τ) ·mR+CI

α · sin(2πt/τ) ·mO ·mR+CO

α · sin(2πt/τ) ·mF ·mR+CI

α · sin(2πt/τ) ·mO ·mF ·mR+CO

0 +CC


Learning Methods for Parameterized Gaits
Given the SineModel5 parameterized motion model (see
previous section) and the allowable ranges for its five pa-
rameters (Table 1), the task is discovering values for the five
parameters that result in fast gaits.

If we choose a value for the five dimensional parameter
~θ, then a given physical trial gives us one measurement of
the fitness f(~θ) of that parameter vector. Two things make
learning difficult. First, each evaluation of f(~θ) is expen-
sive, taking 15-20 seconds on average. Second, the fitness
returned by such evaluations has proved to be very noisy,
with the standard deviation of the noise often being roughly
equivalent to the size of the measurement.

We test the ability of different learning algorithms to
choose the next value of ~θ to try, given a list of the ~θ val-
ues already evaluated and their fitness measurements f(~θ).

We evaluated the following six different learning algo-
rithms for the parameterized motion models:

Random: This method randomly generates parameter vec-
tors in the allowable range for every trial. This strategy
serves as as baseline for comparison.

Uniform random hill climbing: This method repeatedly
starts with the current best gait and then selects the next ~θ
by randomly choosing one parameter to adjust and replac-
ing it with a new value chosen with uniform probability in
the allowable range for that parameter. This new point is
evaluated, and if it results in a longer distance walked than
the previous best gait, it is saved as the new best gait.

Gaussian random hill climbing: This method works sim-
ilarly to Uniform random hill climbing, except the next ~θ
is generated by adding random Gaussian noise to the cur-
rent best gait. This results in all parameters being changed
at once, but the resulting vector is always fairly close to the



previous best gait. We used independently selected noise in
each dimension, scaled such that the standard deviation of
the noise was 5% of the range of that dimension.

N-dimensional policy gradient ascent: We implemented
Kohl and Stone’s (Kohl and Stone, 2004) method for local
gradient ascent for gait learning with noisy fitness evalua-
tions. This strategy explicitly estimates the gradient of the
objective function. It does this by first generating n parame-
ter vectors near the initial vector by perturbing each dimen-
sion of each vector randomly by either −ε, 0, or ε. Then
each vector is run on the robot, and for each dimension we
segment the results into three groups: −ε, 0, and ε. The
gradient along this dimension is then estimated as the aver-
age score for the ε group minus the average score for the −ε
group. Finally, the method creates the next ~θ by changing all
parameters by a fixed-size step in the direction of the gradi-
ent. For this study we used values of ε equal to 5% of the
allowable range in each dimension (ranges listed in Table 1),
and a step size scaled such that if all dimensions were in the
range [0, 1], the norm of the step size would be 0.1.

Nelder-Mead simplex method: The Nelder-Mead simplex
method creates an initial simplex with d + 1 vertices for a
d dimensional parameter space. It then tests the fitness of
each vertex and, in general, it reflects the worst point over
the simplex’s centroid in an attempt to improve it. Several
additional rules are used to prevent cycles and local minima;
see Singer and Nelder (2009) for more information.

Linear regression: To initialize, this method chooses and
evaluates five random parameter vectors. It then fits a lin-
ear model from parameter vector to fitness. In a loop, the
method chooses and evaluates a new parameter vector gen-
erated by taking a fixed-size step in the direction of the gra-
dient for each parameter, and fits a new linear model to all
vectors evaluated so far, choosing the model to minimize
the sum of squared errors. The step size is the same as in
N-dimensional policy gradient ascent.

Three runs were performed per learning method. To most
directly compare learning methods, we evaluated the differ-
ent methods by starting each of their three runs, respectively,
with the same three randomly-chosen initial parameter vec-
tors (~θA, ~θB , and ~θC). Runs continued until the performance
plateaued, which we defined as when there was no improve-
ment during the last third of a run.

HyperNEAT Gait Generation and Learning
HyperNEAT is an indirect encoding for evolving artificial
neural networks (ANNs) that is inspired by the way natural
organisms develop (Stanley et al., 2009). It evolves Com-
positional Pattern Producing Networks (CPPNs) (Stanley,
2007), each of which is a genome that encodes an ANN phe-
notype (Stanley et al., 2009). Each CPPN is itself a directed
graph, where the nodes in the graph are mathematical func-
tions, such as sine or Gaussian. The nature of these func-
tions can facilitate the evolution of properties such as sym-

Figure 5: HyperNEAT produces ANNs from CPPNs. ANN
weights are specified as a function of the geometric coordi-
nates of each connection’s source and target nodes. These
coordinates and a constant bias are iteratively passed to the
CPPN to determine each connection weight. The CPPN has
two output values, which specify the weights for each con-
nection layer as shown. Figure from Clune et al. (2011).

metry (e.g. a Gaussian function) and repetition (e.g. a sine
function) (Stanley et al., 2009; Stanley, 2007). The signal
on each link in the CPPN is multiplied by that link’s weight,
which can magnify or diminish its effect.

A CPPN is queried once for each link in the ANN phe-
notype to determine that link’s weight (Figure 5). The in-
puts to the CPPN are the Cartesian coordinates of both the
source (e.g. x = 2, y = 4) and target (e.g. x = 3, y = 5)
nodes of a link and a constant bias value. The CPPN takes
these five values as inputs and produces two output values.
The first output value determines the weight of the link be-
tween the associated input (source) and hidden layer (target)
nodes, and the second output value determines the weight of
the link between the associated hidden (source) and output
(target) layer nodes. All pairwise combinations of source
and target nodes are iteratively passed as inputs to a CPPN
to determine the weight of each ANN link.

HyperNEAT can exploit the geometry of a problem be-
cause the link values between nodes in the ANN pheno-
type are a function of the geometric positions of those
nodes (Stanley et al., 2009; Clune et al., 2009c, 2011). For
quadruped locomotion, this property has been shown to help
HyperNEAT produce gaits with front-back, left-right, and
four-way symmetries (Clune et al., 2009a, 2011).

The evolution of the population of CPPNs occurs ac-
cording to the principles of the NeuroEvolution of Aug-
menting Topologies (NEAT) algorithm (Stanley and Mi-
ikkulainen, 2002), which was originally designed to evolve
ANNs. NEAT can be fruitfully applied to CPPNs because of
their structural similarity to ANNs. For example, mutations
can add a node, and thus a function, to a CPPN graph, or
change its link weights. The NEAT algorithm is unique in
three main ways (Stanley and Miikkulainen, 2002). Initially,
it starts with small genomes that encode simple networks



Figure 6: ANN configuration for HyperNEAT runs. The first
two columns of each row of the input layer receive informa-
tion about a single leg (the angles requested in the previous
time step for its two joints). The final column provides the
previously requested angle of the center joint and, to enable
periodic movements, a sine and cosine wave. Evolution de-
termines the function of the hidden-layer nodes. The nodes
in the output layer specify new joint angles for each respec-
tive joint. The unlabeled nodes in the input and output layers
are ignored. Figure adapted from Clune et al. (2011).

and slowly complexifies them via mutations that add nodes
and links to the network, enabling the algorithm to evolve
the topology of an ANN in addition to its weights. Sec-
ondly, NEAT has a fitness-sharing mechanism that preserves
diversity in the system and gives time for new innovations to
be tuned by evolution before competing them against more
adapted rivals. Finally, NEAT tracks historical information
to perform intelligent crossover while avoiding the need for
expensive topological analysis. A full explanation of NEAT
can be found in (Stanley and Miikkulainen, 2002).

The ANN configuration follows previous studies that
evolved quadruped gaits with HyperNEAT in simula-
tion (Clune et al., 2011, 2009a), but was adapted to accom-
modate the physical robot in this paper. Specifically, the
ANN has a fixed topology (i.e. the number of nodes does
not evolve) that consists of three 3 × 4 Cartesian grids of
nodes forming input, hidden, and output layers (Figure 6).
Adjacent layers were allowed to be completely connected,
meaning that there could be (3 × 4)2 = 288 links in each
ANN (although evolution can set weights to 0, functionally
eliminating the connection). The inputs to the substrate were
the angles requested in the previous time step for each of the
9 joints of the robot (recall that gaits are open-loop, so ac-
tual joint angles are unknown) and a sine and cosine wave
(to facilitate the production of periodic behaviors). The sine
and cosine waves had a period of about half a second.

The outputs of the substrate at each time step were nine
numbers in the range [−1, 1], which were scaled according

to the allowable ranges for each of the nine motors and then
commanded the positions for each motor. Occasionally Hy-
perNEAT would produce networks that exhibited rapid os-
cillatory behaviors, switching from extreme negative to ex-
treme positive numbers each time step. This resulted in mo-
tor commands to alternate extremes every 25ms (given the
command rate of 40Hz), which tended to damage and over-
heat the motors. To ameliorate this problem, we requested
four times as many commanded positions from HyperNEAT
ANN’s and averaged over four commands at a time to obtain
the actual gait g(t). This solution worked well and did not
restrict the expressiveness of HyperNEAT.

As with the parameterized methods, three runs of Hyper-
NEAT were performed. Runs lasted 20 generations with a
population size of 9 organisms in 3 species, allowing a bare
minimum of diversity within and between NEAT species.
These numbers were necessarily small given how much time
it took to conduct evolution directly on a real robot. The re-
maining parameters were identical to Clune et al. (2011).

Results and Discussion
Learning Methods for Parameterized Gaits
The results for the parameterized gaits are shown in Figure 7
and Table 2. A total of 1217 hardware fitness evaluations
were performed during the learning of parameterized gaits,
with the following distribution by learning method: 200 ran-
dom, 234 uniform, 284 Gaussian, 174 gradient, 172 simplex,
153 linear regression. The number of runs varies because
each run plateaued at its own pace. The best overall gait
for the parameterized methods was found by linear regres-
sion, which also had the highest average performance. The
Nelder-Mead simplex also performed quite well on average.
The other local search methods did not outperform random
search; however, all methods did manage to explore enough
of the parameter space to significantly improve on the pre-
vious hand-coded gait in at least one of the three runs. No
single strategy consistently beat the others: for the first trial
Linear Regression produced the fastest gait at 27.58 body
lengths/minute, for the second a random gait actually won
with 17.26, and for the third trial the Nelder-Mead simplex
method attained the fastest gait with 14.83.

One reason the randomly-generated SineModel5 gaits
were so effective may have been due to the SineModel5’s
bias toward regular, symmetric gaits. This may have al-
lowed the random strategy — focusing on exploration — to
be competitive with the more directed strategies that exploit
information from past evaluations.

HyperNEAT Gaits
The results for the gaits evolved by HyperNEAT are shown
in Figure 8 and Table 2. A total of 540 evaluations were per-
formed for HyperNEAT (180 in each of three runs). Over-
all the HyperNEAT gaits were the fastest by far, beating all
the parameterized models when comparing either average



Average Std. Dev.
Previous hand-coded gait 5.16 –

Random search 9.40 6.83
Uniform Random Hill Climbing 7.83 4.56
Gaussian Random Hill Climbing 10.03 6.00

Policy Gradient Descent 6.32 7.39
Nelder-Mead simplex 12.32 3.35

Linear Regression 14.01 12.88
Evolved Neural Network

(HyperNEAT) 29.26 6.37

Table 2: The average and standard deviation of the best gaits
found for each algorithm during each of three runs, in body
lengths/minute.

0

5

10

15

20

0 10 20 30 40 50 60 70 80

B
od

y 
le

ng
th

s 
pe

r 
m

in
ut

e

Iteration

uniform
gaussian
gradient
random

linear_regression
simplex

Figure 7: Average results (± SE) for the parameterized
learning methods, computed over three separately initialized
runs. Linear regression found the fastest overall gait and
had the highest average, followed by Nelder-Mead simplex.
Other methods did not outperform a random strategy.

or best gaits. We believe that this is because HyperNEAT
was allowed to explore a much richer space of motions, but
did so while still utilizing symmetries when advantageous.
The single best gait found during this study had a speed of
45.72 body lengths/minute, 66% better than the best non-
HyperNEAT gait and 8.9 times faster than the hand-coded
gait. Figure 9 shows a typical HyperNEAT gait that had high
fitness. The pattern of motion is both complex (containing
multiple frequencies and repeating patterns across time) and
regular, in that patterns of multiple motors are coordinated.

The evaluation of the gaits produced by HyperNEAT was
more noisy than for the parameterized gaits, which made
learning difficult. For example, we tested an example Hyper-
NEAT generation-champion gait 11 times and found that its
mean performance was 26 body lengths/minute (± 13 SD),
but it had a max of 38 and a min of 3. Many effective Hyper-
NEAT gaits were not preserved across generations because

0 5 10 15 20
0

5

10

15

20

25

30

bo
dy

 le
ng

ht
s 

pe
r 

m
in

ut
e

generations

Figure 8: Average fitness (± SE) of the highest performing
individual in the population for each generation of Hyper-
NEAT runs. The fitness of many high-performing Hyper-
NEAT gaits were halved if the gait overly stressed the mo-
tors (see text), meaning that HyperNEAT’s true performance
without this penalty would be even higher.

a single poor-performing trial could prevent their selection.
The HyperNEAT learning curve would be smoother if the
noise in the evaluations could be reduced or more than one
evaluation per individual could be afforded.

Conclusion and Future Work
We have presented an array of approaches for optimizing
a quadrupedal gaits for speed. We implemented and tested
six learning strategies for parameterized gaits and compared
them to gaits produced by neural networks evolved with the
HyperNEAT generative encoding.

All methods resulted in an improvement over the robot’s
previous hand-coded gait. Building a model of gait per-
formance with linear regression to predict promising di-
rections for further exploration worked well, producing a
gait of 27.5 body lengths/minute. The Nelder-Mead sim-
plex method performed nearly as well, likely due to its ro-
bustness to noise. The other parameterized methods did
not outperform random search. One reason the randomly-
generated SineModel5 gaits performed so well could be be-
cause the gait representation was biased towards effective,
regular gaits, making the highly exploratory random strategy
more effective than more exploitative learning algorithms.

HyperNEAT produced higher-performing gaits than all of
the parameterized methods. Its best-performing gait trav-
eled 45.7 body lengths per minute, which is nearly 9 times
the speed of the hand-coded gait. This could be because Hy-
perNEAT tends to generate coordinated gaits (Clune et al.,
2011, 2009a), allowing it to take advantage of the sym-
metries of the problem. HyperNEAT can also explore a
much larger space of possibilities than the more restric-
tive 5-dimensional parameterized space. HyperNEAT gaits



100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1 1.2 1.4

M
ot

or
 P

os
iti

on

Time (s)

Figure 9: Example of one high-performance gait produced
by HyperNEAT showing commands for each of nine motors.
Note the complexity of the motion pattern. Such patterns
were not possible with the parameterized SineModel5, nor
would they likely result from a human designing a different
low-dimensional parameterized motion model.

tended to produce more complex sequences of motor com-
mands, with different frequencies and degrees of coordina-
tion, whereas the parameterized gaits were restricted to scal-
ing single-frequency sine waves and could only produce cer-
tain types of motor regularities.

Because all 1217 trials were done in hardware, it was dif-
ficult to gather enough data to properly rank the methods
statistically. One direction for future work could be to ob-
tain many more trials. However, a more effective extension
might be to combine frequent trials in simulation with infre-
quent trials in hardware (Bongard et al., 2006). The simula-
tion would produce the necessary volume of trials to allow
the learning methods to be effective, and the hardware trials
would serve to continuously ground and refine the simula-
tor. One could also guide evolution to the most fertile ter-
ritory by penalizing gaits that produced large discrepancies
between simulation and reality (Koos et al., 2010). Another
extension would be to allow gaits that sensed the position
of the robot and other variables to enable the robot to adjust
to its physical state, instead of providing an open-loop se-
quence of motor commands. All of these approaches would
likely improve the quality of automatically generated gaits
for legged robots, which will hasten the day that humanity
can benefit from their vast potential.

Acknowledgments
NSF Postdoctoral Research Fellowship in Biology to Jeff
Clune (award number DBI-1003220).

References
Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient machines

through continuous self-modeling. Science, 314(5802):1118–

1121.

Chernova, S. and Veloso, M. (2005). An evolutionary approach to
gait learning for four-legged robots. In Intelligent Robots and
Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, volume 3, pages 2562–2567.
IEEE.

Clune, J., Beckmann, B., Ofria, C., and Pennock, R. (2009a).
Evolving coordinated quadruped gaits with the HyperNEAT
generative encoding. In Proceedings of the IEEE Congress
on Evolutionary Computation, pages 2764–2771.

Clune, J., Beckmann, B., Pennock, R., and Ofria, C. (2009b). Hy-
brID: A Hybridization of Indirect and Direct Encodings for
Evolutionary Computation. In Proceedings of the European
Conference on Artificial Life, pages 134–141.

Clune, J., Ofria, C., and Pennock, R. (2009c). The sensitivity of
HyperNEAT to different geometric representations of a prob-
lem. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 675–682. ACM.

Clune, J., Stanley, K., Pennock, R., and Ofria, C. (2011). On
the performance of indirect encoding across the continuum
of regularity. IEEE Transactions on Evolutionary Computa-
tion. To appear.

Hornby, G., Takamura, S., Yamamoto, T., and Fujita, M. (2005).
Autonomous evolution of dynamic gaits with two quadruped
robots. IEEE Transactions on Robotics, 21(3):402–410.

Kohl, N. and Stone, P. (2004). Policy gradient reinforcement learn-
ing for fast quadrupedal locomotion. IEEE International
Conference on Robotics and Automation, 3:2619–2624.

Koos, S., Mouret, J., and Doncieux, S. (2010). Crossing the reality
gap in evolutionary robotics by promoting transferable con-
trollers. In Proceedings of the 12th annual conference on Ge-
netic and evolutionary computation, pages 119–126. ACM.

Singer, S. and Nelder, J. (2009). Nelder-mead algorithm.
http://www.scholarpedia.org/article/Nelder-Mead algorithm.

Stanley, K. (2007). Compositional pattern producing networks: A
novel abstraction of development. Genetic Programming and
Evolvable Machines, 8(2):131–162.

Stanley, K., D’Ambrosio, D., and Gauci, J. (2009). A hypercube-
based encoding for evolving large-scale neural networks. Ar-
tificial Life, 15(2):185–212.

Stanley, K. and Miikkulainen, R. (2002). Evolving neural networks
through augmenting topologies. Evolutionary Computation,
10(2):99–127.

Téllez, R., Angulo, C., and Pardo, D. (2006). Evolving the walking
behaviour of a 12 dof quadruped using a distributed neural
architecture. Biologically Inspired Approaches to Advanced
Information Technology, pages 5–19.

Valsalam, V. and Miikkulainen, R. (2008). Modular neuroevolution
for multilegged locomotion. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 265–272.
ACM.

Zykov, V., Bongard, J., and Lipson, H. (2004). Evolving dy-
namic gaits on a physical robot. Proceedings of Genetic and
Evolutionary Computation Conference, Late Breaking Paper,
GECCO, 4.


