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Abstract

This paper introduces an algorithm for evolving 3D objects
with a generative encoding that abstracts how biological mor-
phologies are produced. Evolving interesting 3D objects
is useful in many disciplines, including artistic design (e.g.
sculpture), engineering (e.g. robotics, architecture, or prod-
uct design), and biology (e.g. for investigating morphological
evolution). A critical element in evolving 3D objects is the
representation, which strongly influences the types of objects
produced. In 2007 a representation was introduced called
Compositional Pattern Producing Networks (CPPN), which
abstracts how natural phenotypes are generated. To date,
however, the ability of CPPNs to create 3D objects has barely
been explored. Here we present a new way to create 3D
objects with CPPNs. Experiments with both interactive and
target-based evolution demonstrate that CPPNs show poten-
tial in generating interesting, complex, 3D objects. We fur-
ther show that changing the information provided to CPPNs
and the functions allowed in their genomes biases the types of
objects produced. Finally, we validate that the objects transfer
well from simulation to the real-world by printing them with
a 3D printer. Overall, this paper shows that evolving objects
with encodings based on concepts from biological develop-
ment can be a powerful way to evolve complex, interesting
objects, which should be of use in fields as diverse as art, en-
gineering, and biology.

Motivation and Previous Work

The diversity, complexity, and function of natural morpholo-
gies is awe-inspiring. Evolution has created bodies that can
fly, run, and swim with amazing agility. It would be desir-
able to harness the power of evolution to create synthetic
physical designs and morphologies. Doing so would benefit
a variety of fields. For example, artists, architects and engi-
neers could evolve sculptures, buildings, product designs,
and sophisticated robots. Evolution should be especially
helpful in the design of complex objects with many interact-
ing parts made of non-linear materials. In such challenging
problem domains, evolution excels while human intuition
is limited. Being able to evolve sophisticated morpholo-
gies also furthers biological research because it enables the
investigation of how and why certain natural designs were
produced. Evolving 3D objects is thus worthwhile both as a
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Figure 1: Examples of evolved objects that were transferred
to reality via a 3D printer.

basic science and for its innumerable potential applications.
This paper describes how 3D shapes can be evolved and then
transferred to reality via 3D printing technology (Figure 1).

Previous research in digital morphological evolution has
typically involved encodings that were either highly biolog-
ically detailed, or highly-abstract with less biological accu-
racy. The former camp frequently simulates the low-level
processes that govern biological development, such as the
diffusing morphogen chemicals and proteins that determine
the identity of embryonic cells (Bongard and Pfeifer 2001,
Eggenberger 1997, Miller 2004). While this approach facil-
itates studying the mechanisms of developmental biology,
the computational cost of simulating chemistry in such de-
tail greatly limits the complexity of the evolved phenotypes.
The most complex forms typically evolved in such systems
are simple geometric patterns (such as three bands) (Miller



2004) or groups of shapes resembling the earliest stages of
animal development (Eggenberger 1997).

The second camp employs high-level abstractions that en-
able the evolution of more elaborate forms with many parts,
but these abstractions tend not to reflect the way that organ-
isms actually develop (Wolpert and Tickle 2010, Bentley
1996). An example is Lindenmayer Systems (L-Systems),
which iteratively replace symbols in strings with other sym-
bols until a termination criteria is reached (Lindenmayer
1968, Hornby et al. 2003). While L-Systems can repro-
duce a wide variety of organismal shapes, especially those
of branching plants, they do not model plant developmen-
tal processes (Wolpert and Tickle 2010). Another example
is the work of Sims (1994), who evolved morphologies that
resembled some biological creatures, although with an ab-
stract encoding based on parameterized recursion that does
not resemble natural developmental processes (Sims 1994).

A third option is possible, wherein a high-level abstrac-
tion is based on the developmental processes that give rise
to natural forms. An example of this approach is Composi-
tional Pattern Producing Networks (CPPNs) (Stanley 2007),
which are used to evolve 3D objects in this paper and are de-
scribed in Methods. Two groups have previously evolved 3D
objects with CPPNs, although neither conducted an open-
ended exploration of 3D objects. One group evolved CPPN
objects that were composed of variable-sized spheres and
were evaluated on two tasks: falling (Auerbach and Bongard
2010b) or moving rapidly (Auerbach and Bongard 2010a).
Most of the evolved forms resembled clubs. A second group
evolved soft-bodied robots to move quickly (Hiller and Lip-
son 2010). These studies demonstrate that CPPNs can create
functional shapes, but leave open the question of what types
of 3D objects CPPNs can produce with fewer constraints and
without specific objectives.

2D pictures are evolved with CPPNs on picbreeder.org,
where humans perform selection (Secretan et al. 2011). The
complexity and natural appearance of the resulting images
often support claims regarding the legitimacy of CPPNs as
an abstraction of biological development (Stanley 2007). A
demonstration in 3D would significantly strengthen these
claims, however, because the natural world is 3D. It is possi-
ble that CPPNs are unable to frequently make sensible forms
with the added difficulty of another dimension, and when
objects must be one contiguous unit (which aids in trans-
fers to reality). A recent paper by Bansagi Jr et al. (Science
2011) highlights the need to verify that generative encodings
that produce complex patterns in 2D also can do so in 3D.
By evolving CPPN objects in the natural 3D setting, this pa-
per conducts a critical test of the hypothesis that generative
encodings based on geometric abstractions of development
capture some of the complexity-generating power of natu-
ral morphological development. Doing so also provides a
visually intuitive testbed for studying how variants of such
generative encodings behave. It also reveals the utility of

CPPNs as a representation for 3D object design.

Methods
Compositional Pattern Producing Networks

Compositional Pattern Producing Networks (CPPNs) ab-
stract the process of natural development without simulating
the low-level chemical dynamics involved in developmental
biology (Stanley 2007). Cells (and higher-level modules) in
natural organisms often differentiate into their possible types
(e.g. heart or spleen) as a function of where they are situated
in geometric space (Wolpert and Tickle 2010).

Components of natural organisms cannot directly deter-
mine their geometric location, so developmental processes
have evolved to create gradients of chemicals and proteins
called morphogens that organismal components use to figure
out where they are and, thus, what to become (Wolpert and
Tickle 2010). For example, in many animals the anterior-
posterior and dorsal-ventral axes are specified by maternally
provided morphogen gradients. Embryonic genes then con-
struct more complicated geometric patterns of morphogens
as a function of these simpler gradients. Downstream genes
can construct additional pattern as a function of any of the
patterns already created, enabling the production of patterns
of arbitrary complexity (Wolpert and Tickle 2010).

CPPNs abstract this process by allowing similar geomet-
ric patterns to be composed of other geometric patterns, but
represent the patterns mathematically instead of via diffus-
ing morphogens. To replace maternally-provided gradients,
the experimenter provides the initial gradients. Final pat-
terns output by the CPPN determine the attributes of the
phenotypic components at different geometric locations. For
example, two-dimensional pictures could be encoded by it-
eratively passing the coordinates of each pixel on a canvas
(e.g. x = 2,y = 4) to a CPPN genome and having the output
specify the color or shade of each pixel (Figure 2).

Each CPPN is a directed graph in which every node is
itself a single function, such as sine or Gaussian. The na-
ture of the functions can create a wide variety of desirable
properties, such as symmetry (e.g. a Gaussian function) and
repetition (e.g. a sine function) that evolution can exploit.
Because the genome allows functions to be made of other
functions, coordinate frames can be combined. For instance,
a sine function early in the network can create a repeat-
ing theme that, when passed into the symmetrical Gaussian
function, creates a repeating series of symmetrical motifs
(Figure 2). This process abstracts the natural developmental
processes described above (Wolpert and Tickle 2010).

The links that connect and allow information to flow be-
tween nodes in a CPPN have a weight that can magnify or
diminish the values that pass along them. Mutations that
change these weights may, for example, give a stronger in-
fluence to a symmetry-generating part of a network while
diminishing the contribution from another part.
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Figure 2: CPPNs combine mathematical functions to create
regularities, such as symmetries and repeated modules, with
and without variation. Adapted from Stanley (2007).
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Variation is produced by mutating or crossing CPPNs.
Mutations can add a node or change weights. The default set
of allowable functions for CPPNs in this paper are sine, sig-
moid, Gaussian, and linear, although we also experimented
with additional functions (see Results). The evolution of
the population of CPPN networks occurs according to the
principles of the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm (Stanley and Miikkulainen 2002).

The NEAT algorithm contains three major compo-
nents (Stanley and Miikkulainen 2002). (1) It starts with
small genomes that encode simple networks and complexi-
fies them via mutations that add nodes and links to the net-
work. This complexification enables the algorithm to evolve
the network topology in addition to its weights. (2) NEAT
preserves diversity via a fitness-sharing mechanism that al-
lows new innovations time to be tuned by evolution before
competing them against more optimized rivals. (3) crossover
utilizes historical information in a way that is effective, yet
avoids the need for expensive topological analysis.

Encoding 3D Objects with CPPNs

To evolve 3D objects, inputs for the z, y, and z dimensions
are provided to a CPPN. Additional gradients can be pro-
vided, which may bias the types of objects produced (see
Results). A workspace (maximum object size) is defined
with a resolution, which determines the number of voxels in
each dimension. In this paper there are 10 voxels in the  and
z dimensions and 20 in the y (vertical) dimension. The x,
y, and z value of each voxel are iteratively input to a CPPN,
and voxels are considered full if the CPPN output is greater
than a threshold (here set to 0.1), otherwise the voxel is con-
sidered empty. The 3D voxel array is then processed by
the surface-smoothing Marching Cubes algorithm (Lorensen
and Cline 1987). A normal is provided for each vertex when
visualizing the objects in OpenGL, a graphics technique that
further smooths the surface. These two smoothing steps en-

able high-resolution CPPN objects to be visualized without
prohibitive computational costs.

This algorithm for encoding 3D objects is a more straight-
forward extension of how CPPNs encode 2D pictures (Stan-
ley 2007, Secretan et al. 2011) than another algorithm for
evolving 3D objects with CPPNs, which included growth
over time and limited shapes to collections of attached
spheres of different sizes (Auerbach and Bongard 2010b;a).

Selection Mechanisms (Fitness Assignment)

We evolve images with interactive evolution and target-
based evolution. During interactive evolution the user (here,
the first author) views IV rotating objects (here, 15) and se-
lects a champion, which receives a fitness of 1000. The user
can also reward additional organisms that receive a fitness
of 500. To avoid uninteresting objects, those that are not
chosen, yet have voxel counts between 10% and 90% of
the maximum number possible, are given a fitness of 100.
The remaining objects are given a fitness of 1. For target
evolution, the fitness is the percent of voxels that matched
the target object. To magnify differences in fitness values,
all fitness scores serve as an exponent to a large constant
¢ = 2000 to produce the final fitness value. The parameters
are identical to a previous work (Clune et al. 2011), except
mutations were allowed to be larger (MutationPower = 2.5).

Results and Discussion
Interactive Evolution

Overall summary We study interactive evolution because
it allows an open-ended exploration of the design space of
objects CPPNs can produce. Additionally, interactive evolu-
tion avoids the greedy nature of target-based evolution, po-
tentially allowing it to access more interesting objects (Sec-
retan et al. 2011, Lehman and Stanley 2008). A drawback
of interactive evolution is that it is subjective, but science
should not abandon such a useful tool simply because it is
subjective. While user preferences bias the types of objects
selected, the encoding has to be able to produce such objects
in the first place in order for them to be selected. Differ-
ent encodings will bias the types of patterns evolved (Clune
et al. 2011), meaning that interactive evolution can inform
us about the biases and expressive power of the encoding.

Figure 3 shows example objects from different gener-
ations during a run of interactive evolution. The geo-
metric patterns become more complex over generations,
which reflects the property of complexification built into
NEAT (Stanley and Miikkulainen 2002).

Figure 4 displays a few of the interesting objects dis-
covered in different runs, some of which had different in-
puts and parameters (described below). It is important to
note that these objects were chosen from a small number of
runs performed by one person, each of which was limited
to tens or perhaps a few hundred generations. It is note-
worthy that such recognizable 3D forms emerge in such a
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Figure 3: Representative objects from different generations
of a single run of interactive evolution. From top to bottom,
rows display individuals from generations 1, 15, and 33.

small sample size. These 3D objects should not be held to
the same standard as pictures from picbreeder.org, where
hundreds of users have published thousands of images af-
ter performing over 150,000 evaluations across hundreds of
generations (Secretan et al. 2011).

The objects in Figure 4 exhibit many properties that are
desirable both for studying morphological evolution and har-
nessing it for engineering or artistic purposes. The objects
are frequently regular, a property which is important in en-
gineering and for evolvability (Lipson 2007, Clune et al.
2011). An important regularity is symmetry, which is ev-
ident with respect to different dimensions in many of the
objects. For example, all of the objects in generation 33
of Figure 3 are highly left-right symmetric, and objects b7
and b8 in Figure 4 exhibit left-right and top-bottom symme-
tries. Another useful regularity is repetition, which occurs
frequently in the evolved objects (e.g. the top-right object in
Figure 3). A further beneficial property is exhibiting regu-
larity with variation (Stanley and Miikkulainen 2003, Lip-
son 2007, Clune et al. 2011). For example, Figure 4b1 has
a motif that appears like an animal head, but is repeated in
different sizes and with other subtle variations. Symmetric
patterns with asymmetric variations can also be observed,
such as in Figure 4a8 and Figure 4b6.

It is important to note that humans often select regular,
symmetrical shapes, which increases their frequency in in-
teractive evolution. That said, biology and engineering also
often reward regularity. Additionally, it has been shown that
when CPPNs generate artificial neural networks that con-
trol robots in target-based evolution, the neural wiring pat-
terns are often regular, including symmetries and repeated
themes (Clune et al. 2011), demonstrating that CPPNs pro-
duce regularities even without humans performing selection.

Most importantly, the evolved objects often look simi-
lar to natural forms or engineered designs, revealing that
CPPNs can produce the types of objects we are interested in
designing and studying with synthetic morphological evolu-
tion. Humans can only select such such familiar forms if an
encoding tends to produce such designs, which has not been
the case for most previous generative encodings. People of-
ten describe Figure 4a2 and 4a3 as faces, 4a4 as a Jack-0’-
lantern face, 4a5 as an animal figurine, 4a6 as an African
statue of a human, 4a7 as a human female stomach, 4a8 as
a human female torso, 4b1 and 4b4 as animals, 4b2 and 4b3
as elephants, 4b5 as a human head and shoulders, 4b6 as a
horned mask, and 4b7 and 4b8 as spaceships. Some also
describe 4b7 as a butterfly. People describe other objects as
interesting art, even though they do not resemble any spe-
cific natural or human design (e.g. Figure 4al). Such ob-
jects can potentially spark artistic ideas for new forms. The
fact that the shapes consistently evoke human and natural
designs demonstrates the expressive power of the CPPN en-
coding to produce interesting 3D objects.

An additional important property is that the offspring of
the 3D CPPN objects are similar to their parents, but are
varied in interesting ways. Some encodings lack this prop-
erty in that mutations have dramatic effects, rendering most
offspring very different from their parents, which hinders
evolvability (Stanley and Miikkulainen 2003). For exam-
ple, Figure 4b4 is the child of Figure 4b3, and Figure 4b2
is their close relative. All three are consistently described as
animals, yet are interesting variations on the animal theme.
For example, only a single generation of genetic changes
between Figure 4b3 and Figure 4b4 transformed what ap-
pears like an elephant with a trunk into something resem-
bling an elephant with warthog tusks. A different variant of
Figure 4b3 that thickened the trunk can be seen in Figure 1
(center row, left), which is next to a printed copy of Fig-
ure 4b3. Moreover, Figure 4b3, its relative in Figure 1, and
Figure 4b2 all evoke elephants, but they are quite different
objects, suggesting that the CPPN has captured some fun-
damental aspects of the elephant concept that it expresses in
different ways.

Some of the geometric complexity in the genome is not
visible in these 3D phenotypes because a threshold deter-
mines the presence or absence of a voxel. In contrast,
picbreeder pictures have a continuum of outputs in grayscale
and color, which adds to their complexity. Pre-thresholded
geometric information could be useful, however, to make
colored 3D objects, or to have objects with multiple materi-
als (e.g. the soft-robot equivalent of muscle and bone).

Varying CPPN parameters generates different objects
To test whether the types of objects produced could be bi-
ased by the CPPN inputs and parameters, we performed
multiple runs of interactive evolution with varying condi-
tions. We initially provided only z, y, and z values for
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Figure 4: Example objects evolved with CPPNs via interactive evolution.

each voxel. Even with this minimal information, regulari-
ties such as symmetries and repeating themes were common
(Figure 3), which is expected in a generative encoding with
symmetric and repeating genomic functions. The objects in
this setup seemed to require more generations before they
became interesting, and usually did not appear like objects
floating in space, but instead bordered the workspace wall.

We then added the distance from center as an input to the
CPPN, which picbreeder also has (in 2D) (Secretan et al.
2011). This information more frequently created rounded
objects centered in space. Because the distance-from-center
function took the normalized values in each dimension, and
the y (height) dimension was longer, an egg-shaped motif
was common (Figure 5, left three). All of the objects in
Figure 4 have this input. Preliminary experiments with other
inputs also revealed interesting biases in the resulting objects
(not shown), suggesting a rich area of research regarding
how best to bias CPPNs with seed gradients.

To date, no published results explore how patterns dif-
fer when recurrence is allowed in CPPN genomes. We en-
abled recurrence and discovered that the resulting patterns
are qualitatively different in that they tend to include fractal
patterns. For example, branching patterns emerged, such as
an object resembling a tree (Figure 6, left) and another evok-
ing the vascular system (Figure 6, center). Like with fractals,
the complexity is often concentrated at the surface boundary,
producing a jagged surface effect (e.g. Figure 6, right). Ob-
jects with recurrent genomes were much more likely to have
small, separated pieces floating in space.

Another interesting parameter of CPPNss is the set of pos-
sible genomic node functions. No research published to
date has tested different function sets on the same problem
to understand how CPPN patterns are affected by this pa-
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Figure 5: Objects evolved with a distance-from-center in-
put (left three), which frequently featured egg-shape motifs,
and objects evolved with an expanded set of genome func-
tions (right three). The rightmost two images show different
angles of the same object. Facets in the right three objects
result from a close zoom and because, for illustration, nor-
mals are provided for facets instead of vertices.

rameter. Visual domains such as 3D objects are a helpful
place to start such explorations because of the intuition they
provide. We added a square, cosine, and sign-preserving
square root function and performed additional runs. Objects
in these runs tend to be more complex in earlier generations,
and seem to involve both rounded and sharp edges. Fig-
ure 4b7 and the rightmost three in Figure 5 are example ob-
jects evolved with this expanded genomic node function set.

Target-based Evolution

A second way to explore the capabilities of CPPNs is to
challenge them to produce a target object. Knowing how
CPPNs perform in 3D in target-based evolution is helpful
for numerous reasons. Initially, it serves as a preliminary test
of how CPPNs might perform on more open-ended, yet still
target-based problems, such as evolving robot morphologies
to perform certain tasks (e.g. locomotion). Additionally, bi-
ologists would benefit if they could repeatedly evolve var-



Figure 6: Example objects with recurrent genomes.

ious morphologies to study whether certain developmental
strategies for constructing 3D geometric patterns arise fre-
quently. Finally, target evolution allows an artist or engineer
to explore objects that are similar to a target object, yet dif-
fer in interesting ways (similar to how Figure 4b4 and Fig-
ure 4b2 result from slight permutations to the genome of
Figure 4b3). Finally, target-based evolution is much faster,
enabling an exploration the effects of different parameter
settings, which can inform interactive evolution.

The target object for this paper is shown in Figure 8a. It
consists of four partially-overlapping spheres, with the outer
two halved by workspace bounding box. This target has
round shapes that are different from the egg-shaped motif fa-
cilitated by the distance-from-center input, providing a test
of whether such a related input improves performance. Each
treatment has 20 runs with a population of 150 for 1000 gen-
erations, unless otherwise specified.

The baseline treatment featured only x, y, and z inputs
and the default set of genome functions. The best perform-
ing object in each run captures the long cylindrical shape of
the target, but most attempts at rounded edges are imperfect
combinations of straight-line functions. All runs except one
failed to carve much material away between the spheres. An
average of 90.8% (4 0.003 SE) of voxels are matched (Fig-
ure 7), but the target object is not identifiable until about
> 93% of voxels are matched. As such, the small differ-
ences in fitness between the treatments in Figure 7 represent
substantial differences in whether the target object is rec-
ognizable. Interestingly, one outlier run in this treatment
performed much better than the rest (with 94.6% of voxels
correct). It features rectangular approximations of spheres
(Figure 8b). The lack of round shapes in this treatment cor-
roborates the previous subjective observation from interac-
tive evolution that CPPNs can struggle to evolve and exploit
round gradients when they are not provided as inputs.

To test if seeding CPPNs with spherical gradients makes
it easier to match this rounded target, we added distance to
the center as an input. The CPPNs in the previous treatment

could have evolved to calculate this same information, but
that may have been difficult. Surprisingly, this information
significantly lowered performance to 90.0% (£ 0.002 SE,
p = 0.013, Mann-Whitney test, Figure 7). However, the
evolved objects all have smooth, round forms (Figure 8c-d),
confirming that providing different seed gradients can bias
the types of evolved objects. While this might be expected
in early generations, it is interesting that the gradients pro-
vided have noticeable effects after a thousand generations.
This result is in line with a previous paper that found that
the information input into CPPNs can bias the resulting phe-
notypes (Clune et al. 2009). We include this input in the re-
maining treatments in this paper because it facilitates round
surfaces, even though it hurt performance in this experiment.

Because interactive evolution features smaller population
sizes, it is worthwhile to study how this difference affects
the search for 3D objects. Additionally, since NEAT com-
plexifies genomes over evolutionary time, having more gen-
erations may improve the search by accessing genomes with
more hidden nodes. We investigate these issues by decreas-
ing the population size from 150 to 15 and increasing the
number of generations tenfold to 10%, which keeps the num-
ber of evaluated objects the same. This change significantly
improves performance to 91.8% (£ 0.003 SE, p < 0.001,
Mann-Whitney test, Figure 7), suggesting that the small
population sizes in interactive evolution do not hurt, and
may actually benefit, morphological evolution with NEAT-
based encodings. The evolved objects tend to have more
space carved out between the spheres (Figure 8e-f).

A fundamental evolutionary parameter that can greatly af-
fect evolvability is the mutation rate. We varied the major
sources of mutation in NEAT by altering the rate at which
genomic links are added, removed, and mutated, as well
as the rate at which genomic nodes are added. Increas-
ing the node addition rate significantly boosted performance
(p < 0.001, Mann-Whitney test, Figure 7) to 91.5% (£
0.003 SE). Changing the other mutation rate parameters did

—Baseline (B)
—&-B + Distance From Center(DFC)
B + DFC + Longer with Smaller Pop (LSP)
B + DFC + Higher Add Node Mutation Rate (HMR)
B + DFC + LSP + HMR
——B + DFC + LSP + HMR + More Functions

0 30 60 920 120 150
evaluations (thousands)

percent of voxels maiched

Figure 7: Means of the best-performing individuals for
target-based evolution. See text for variance.
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Figure 8: Target-based evolution objects.

not improve performance (data not shown).

Because a smaller population with more generations was
beneficial, and because a higher mutation rate was benefi-
cial, we tested whether both changes together would out-
perform either alone. The combination did improve per-
formance to 92.0% (Figure 7), but the difference was not
significant (p > 0.05, Mann-Whitney test). We also found
that the expanded genome function set (described previ-
ously) improved performed to 93.0%, which was significant
(p = 0.022, Mann-Whitney test). As before, the objects
in this treatment seemed to combine rounded surfaces with
sharper edges: while most were smooth (e.g. Figure 8g-h), a
few had rough patches on their surface, including Figure 8i.
Adding recurrent genomic connections to this treatment did
not significantly affect performance (93.3%, p > 0.05).

Overall, the target-based evolution experiments reveal
that evolving CPPNs can roughy match a target object.
While a high percentage of voxels were matched, the degree
to which the evolved objects qualitatively resemble the tar-
get is subjective and debatable. The most important contri-
bution of these experiments is to better understand the way
in which target-based evolution is biased by different pa-
rameters. These results are preliminary, however, until more
tests can be conducted with additional targets.

It is also interesting that many of the evolved objects look
designed for a purpose. For example, many of the objects
in Figure 8 seem like functional and aesthetically attrac-
tive objects carved on a lathe, such as legs from tables and
chairs or posts from banisters and railings. One reason this
is surprising is because it could have been the case that the
greedy nature of target-based evolution would have gained
improvements by iteratively adding small patches of vox-
els that match a subset of the overall space. Such a patch-
work solution would not look as regular and smooth as the
objects that actually evolved, suggesting that CPPNs are bi-

ased away from such a piecemeal strategy. Previous work
has shown that CPPNs have difficulty making exceptions
to regular patterns when evolving neural networks (Clune
et al. 2011), which could explain why the target object in
this study was not matched one patch at a time. Such a bias
toward regularity may simultaneously explain the smooth-
ness of the evolved objects and why matching the final few
percent of voxels is so difficult.

Artists and engineers may actually benefit from the fact
that the evolved objects share some properties of the target,
but are different in interesting ways. This means that a de-
signer can provide a seed object as a target, and a series of
objects can automatically be generated that are aesthetically
interesting variations on that seed concept (Figure 8).

Transferring Objects to the Physical World

Advances in 3D printing technologies make it possible to
transfer evolved objects into the physical world, which may
help artists and engineers benefit from this technology. To
test whether CPPN objects maintained their appearance and
structural integrity in reality we printed them on a Con-
nex500 3D printer. The objects look similar to their sim-
ulated counterparts and are structurally sound (Figure 1).
One difference is that non-contiguous pieces (e.g. the top
of Figure6, left) are not held in place in the physical
world without additional scaffolding. By printing in a semi-
transparent material, we also discovered that none of the
objects have visible hollow areas embedded within them,
although CPPNs can create such negative spaces. While
the gap between simulated and physical objects was not ex-
pected to be large for static objects, it is helpful to have ver-
ified the fidelity of the transfer.

Conclusions and Future Work

This paper introduces an algorithm for evolving 3D objects
with the CPPN generative encoding, which is a computa-
tionally efficient abstraction of biological development. We
conducted both interactive and target-based evolution to ex-
plore the ability of CPPNs to create complex objects, espe-
cially those that resemble natural and engineered designs.
A small, preliminary exploration of the design space of
3D CPPN objects unearthed a diversity of objects that evoke
natural and engineered forms. Many of the objects featured
regularities such as symmetry and repetition, with and with-
out variation. Such properties are important for engineer-
ing and evolvability (Lipson 2007, Clune et al. 2011), and
suggest that CPPNs are a promising encoding for evolving
useful and aesthetically pleasing objects. To extend this re-
search we are creating a website like picbreeder.org (Secre-
tan et al. 2011) where users can collaboratively evolve 3D
objects online, which will provide a much larger exploration
of the potential of this technology. It will also overcome the
need for any individual to perform all of the evaluations in a
lineage and thus allow more complex objects to evolve.



Experiments with target-based evolution on one target re-
vealed how the inputs and parameters of CPPNs can influ-
ence the types of objects they evolve. The evolved objects
roughly resemble the target, but do not match it precisely.
While the evolved objects share some properties of the tar-
get, they also differ from it in interesting ways. This prop-
erty could help artists and engineers by providing 3D de-
signs that are variations on a seed concept. All of these con-
clusions are tentative, however, since experiments were only
conducted with one target. Future work is necessary to de-
termine whether these observations generalize.

While there are many useful applications for evolving
static, single-material 3D objects, this technology is also a
stepping stone to evolving objects that can move and that
have multiple materials. In future work we will evolve such
soft-bodied robots in simulation and transfer them to the
physical world. Doing so will enable us to harness the power
of evolution and developmental biology to begin to create
synthetic creatures that have some of the exciting properties
of their natural counterparts.
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