
in this issue

Evolving 3D Objects
Jeff Clune & Hod Lipson

Beyond Biology
Rebecca Schulman

ODYSCI academic
search portal

calls & calendar

SIGEVOlution
newsletter of the ACM Special Interest Group on Genetic and Evolutionary Computation

Volume 5
Issue 4



EDITORIAL

Editorial

G
ECCO-2012 deadline is less than three months away (January 13, 2012!). It is time to go back

to that incredible idea you had for so long but you did not have time to finalize into a paper

yet! You know you do not want to miss the next GECCO! You know we would miss you and you

also know that you would miss meeting your friends, attending those exciting presentations,

those great tutorials and the funny discussions. And, if it helps, I promise this time I won’t sing!

This new issue of SIGEVOlution completes the fifth volume and brings you two new exciting articles. The

first one, by Jeff Clune and Hod Lipson, presents the algorithm behind EndlessForms.com, their website for

the interactive evolution of 3D objects. The scientific purpose of EndlessForms.com is to let researchers

explore what complex designs can be produced when evolution is powered by a generative encoding

based on developmental biology. Its practical and more fun purpose is to allow people to create unique

physical objects easily while seeing artificial evolution in action. And the best part is that the evolved

objects can be published and brought to life using 3D printers. Yes, exactly like the ones shown the cover!

The second article by Rebecca Schulman, who gave an extraordinary keynote at GECCO-2011, provides a

brief overview of her applications in the new field of structural DNA nanotechnology to modularly design

nanoscale components that together can be assembled into a system for self-replicating a new form of

chemical information, and thus for evolving a new type of chemical sequence.

As usual, my due thanks go to the people who made this possible: Jeff Clune, Hod Lipson, Rebecca

Schulman, Reinaldo Bergamaschi, Cristiana Bolchini, and board members Dave Davis and Martin Pelikan.

The cover shows a set of artifacts evolved with the technology behind the EndlessForms.com website and

produced using a 3D printer.

Pier Luca
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Evolving 3D Objects with a
Generative Encoding Inspired by
Developmental Biology
Jeff Clune & Hod Lipson, Department of Mechanical and Aerospace Engineering, Cornell University

This paper introduces an algorithm for evolving 3D objects with a gener-

ative encoding that abstracts how biological morphologies are produced.

Evolving interesting 3D objects is useful in many disciplines, including

artistic design (e.g. sculpture), engineering (e.g. robotics, architecture,

or product design), and biology (e.g. for investigating morphological evo-

lution). A critical element in evolving 3D objects is the representation,

which strongly influences the types of objects produced. In 2007 a rep-

resentation was introduced called Compositional Pattern Producing Net-

works (CPPN), which abstracts how natural phenotypes are generated.

To date, however, the ability of CPPNs to create 3D objects has barely

been explored. Here we present a new way to create 3D objects with

CPPNs. Experiments with both interactive and target-based evolution

demonstrate that CPPNs show potential in generating interesting, com-

plex, 3D objects. We further show that changing the information provided

to CPPNs and the functions allowed in their genomes biases the types of

objects produced. Finally, we validate that the objects transfer well from

simulation to the real-world by printing them with a 3D printer. Overall,

this paper shows that evolving objects with encodings based on concepts

from biological development can be a powerful way to evolve complex,

interesting objects, which should be of use in fields as diverse as art,

engineering, and biology.

1 Motivation and Previous Work

The diversity, complexity, and function of natural morphologies is awe-

inspiring. Evolution has created bodies that can fly, run, and swim with

amazing agility. It would be desirable to harness the power of evolu-

tion to create synthetic physical designs and morphologies. Doing so

would benefit a variety of fields. For example, artists, architects and

engineers could evolve sculptures, buildings, product designs, and so-

phisticated robots. Evolution should be especially helpful in the design of

complex objects with many interacting parts made of non-linear materi-

als. In such challenging problem domains, evolution excels while human

intuition is limited. Being able to evolve sophisticated morphologies also

furthers biological research because it enables the investigation of how

and why certain natural designs were produced. Evolving 3D objects is

thus worthwhile both as a basic science and for its innumerable potential

applications. This paper describes how 3D shapes can be evolved and

then transferred to reality via 3D printing technology (Figure 1).

Previous research in digital morphological evolution has typically in-

volved encodings that were either highly biologically detailed, or highly-

abstract with less biological accuracy. The former camp frequently simu-

lates the low-level processes that govern biological development, such as

the diffusing morphogen chemicals and proteins that determine the iden-

tity of embryonic cells [Bongard and Pfeifer, 2001, Eggenberger, 1997,

Miller, 2004]. While this approach facilitates studying the mechanisms of

developmental biology, the computational cost of simulating chemistry

in such detail greatly limits the complexity of the evolved phenotypes.
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Fig. 1: Examples of evolved objects that were transferred to reality via a 3D

printer.

The most complex forms typically evolved in such systems are

simple geometric patterns (such as three bands) [Miller, 2004] or

groups of shapes resembling the earliest stages of animal develop-

ment [Eggenberger, 1997].

The second camp employs high-level abstractions that enable the

evolution of more elaborate forms with many parts, but these

abstractions tend not to reflect the way that organisms actually

develop [Wolpert and Tickle, 2010, Bentley, 1996]. An example is

Lindenmayer Systems (L-Systems), which iteratively replace sym-

bols in strings with other symbols until a termination criteria is

reached [Lindenmayer, 1968, Hornby et al., 2003]. While L-Systems

can reproduce a wide variety of organismal shapes, especially those

of branching plants, they do not model plant developmental pro-

cesses [Wolpert and Tickle, 2010]. Another example is the work of

Sims (1994), who evolved morphologies that resembled some biolog-

ical creatures, although with an abstract encoding based on parame-

terized recursion that does not resemble natural developmental pro-

cesses [Sims, 1994].

A third option is possible, wherein a high-level abstraction is based

on the developmental processes that give rise to natural forms. An

example of this approach is Compositional Pattern Producing Net-

works (CPPNs) [Stanley, 2007], which are used to evolve 3D objects

in this paper and are described in Methods. Two groups have previ-

ously evolved 3D objects with CPPNs, although neither conducted an

open-ended exploration of 3D objects. One group evolved CPPN ob-

jects that were composed of variable-sized spheres and were evalu-

ated on two tasks: falling [Auerbach and Bongard, 2010b] or moving

rapidly [Auerbach and Bongard, 2010a]. Most of the evolved forms re-

sembled clubs. A second group evolved soft-bodied robots to move

quickly [Hiller and Lipson, 2010]. These studies demonstrate that CPPNs

can create functional shapes, but leave open the question of what types

of 3D objects CPPNs can produce with fewer constraints and without spe-

cific objectives.

2D pictures are evolved with CPPNs on picbreeder.org, where humans

perform selection [Secretan et al., 2011]. The complexity and natu-

ral appearance of the resulting images often support claims regard-

ing the legitimacy of CPPNs as an abstraction of biological devel-

opment [Stanley, 2007]. A demonstration in 3D would significantly

strengthen these claims, however, because the natural world is 3D.
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It is possible that CPPNs are unable to frequently make sensible forms

with the added difficulty of another dimension, and when objects must

be one contiguous unit (which aids in transfers to reality). A recent paper

by Bánsági Jr et al. (Science 2011) highlights the need to verify that gen-

erative encodings that produce complex patterns in 2D also can do so in

3D. By evolving CPPN objects in the natural 3D setting, this paper con-

ducts a critical test of the hypothesis that generative encodings based on

geometric abstractions of development capture some of the complexity-

generating power of natural morphological development. Doing so also

provides a visually intuitive testbed for studying how variants of such

generative encodings behave. It also reveals the utility of CPPNs as a

representation for 3D object design.

2 Methods

2.1 Compositional Pattern Producing Networks

Compositional Pattern Producing Networks (CPPNs) abstract the process

of natural development without simulating the low-level chemical dynam-

ics involved in developmental biology [Stanley, 2007]. Cells (and higher-

level modules) in natural organisms often differentiate into their possible

types (e.g. heart or spleen) as a function of where they are situated in

geometric space [Wolpert and Tickle, 2010].

Components of natural organisms cannot directly determine their ge-

ometric location, so developmental processes have evolved to create

gradients of chemicals and proteins called morphogens that organis-

mal components use to figure out where they are and, thus, what to

become [Wolpert and Tickle, 2010]. For example, in many animals the

anterior-posterior and dorsal-ventral axes are specified by maternally

provided morphogen gradients. Embryonic genes then construct more

complicated geometric patterns of morphogens as a function of these

simpler gradients. Downstream genes can construct additional pattern

as a function of any of the patterns already created, enabling the produc-

tion of patterns of arbitrary complexity [Wolpert and Tickle, 2010].

CPPNs abstract this process by allowing similar geometric patterns to be

composed of other geometric patterns, but represent the patterns math-

ematically instead of via diffusing morphogens. To replace maternally-

provided gradients, the experimenter provides the initial gradients. Final

patterns output by the CPPN determine the attributes of the phenotypic

components at different geometric locations.

Fig. 2: CPPNs combine mathematical functions to create regularities, such as

symmetries and repeated modules, with and without variation. Adapted

from Stanley (2007).

For example, two-dimensional pictures could be encoded by iteratively

passing the coordinates of each pixel on a canvas (e.g. x = 2, y = 4) to a

CPPN genome and having the output specify the color or shade of each

pixel (Figure 2).

Each CPPN is a directed graph in which every node is itself a single func-

tion, such as sine or Gaussian. The nature of the functions can create a

wide variety of desirable properties, such as symmetry (e.g. a Gaussian

function) and repetition (e.g. a sine function) that evolution can exploit.

Because the genome allows functions to be made of other functions, co-

ordinate frames can be combined. For instance, a sine function early in

the network can create a repeating theme that, when passed into the

symmetrical Gaussian function, creates a repeating series of symmetri-

cal motifs (Figure 2). This process abstracts the natural developmental

processes described above [Wolpert and Tickle, 2010].

The links that connect and allow information to flow between nodes in

a CPPN have a weight that can magnify or diminish the values that pass

along them. Mutations that change these weights may, for example, give

a stronger influence to a symmetry-generating part of a network while

diminishing the contribution from another part.
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Variation is produced by mutating or crossing CPPNs. Mutations can

add a node or change weights. The default set of allowable functions

for CPPNs in this paper are sine, sigmoid, Gaussian, and linear, al-

though we also experimented with additional functions (see Results). The

evolution of the population of CPPN networks occurs according to the

principles of the NeuroEvolution of Augmenting Topologies (NEAT) algo-

rithm [Stanley and Miikkulainen, 2002].

The NEAT algorithm contains three major compo-

nents [Stanley and Miikkulainen, 2002]. (1) It starts with small genomes

that encode simple networks and complexifies them via mutations that

add nodes and links to the network. This complexification enables the

algorithm to evolve the network topology in addition to its weights.

(2) NEAT preserves diversity via a fitness-sharing mechanism that

allows new innovations time to be tuned by evolution before competing

them against more optimized rivals. (3) crossover utilizes historical

information in a way that is effective, yet avoids the need for expensive

topological analysis.

2.2 Encoding 3D Objects with CPPNs

To evolve 3D objects, inputs for the x, y, and z dimensions are provided to

a CPPN. Additional gradients can be provided, which may bias the types

of objects produced (see Results). A workspace (maximum object size) is

defined with a resolution, which determines the number of voxels in each

dimension. In this paper there are 10 voxels in the x and z dimensions

and 20 in the y (vertical) dimension. The x, y, and z value of each voxel

are iteratively input to a CPPN, and voxels are considered full if the CPPN

output is greater than a threshold (here set to 0.1), otherwise the voxel is

considered empty. The 3D voxel array is then processed by the surface-

smoothing Marching Cubes algorithm [Lorensen and Cline, 1987]. A nor-

mal is provided for each vertex when visualizing the objects in OpenGL, a

graphics technique that further smooths the surface. These two smooth-

ing steps enable high-resolution CPPN objects to be visualized without

prohibitive computational costs.

This algorithm for encoding 3D objects is a more straightfor-

ward extension of how CPPNs encode 2D pictures [Stanley, 2007,

Secretan et al., 2011] than another algorithm for evolving 3D

objects with CPPNs, which included growth over time and lim-

ited shapes to collections of attached spheres of different

sizes [Auerbach and Bongard, 2010b, Auerbach and Bongard, 2010a].

2.3 Selection Mechanisms (Fitness Assignment)

We evolve images with interactive evolution and target-based evolution.

During interactive evolution the user (here, the first author) views N ro-

tating objects (here, 15) and selects a champion, which receives a fitness

of 1000. The user can also reward additional organisms that receive a fit-

ness of 500. To avoid uninteresting objects, those that are not chosen,

yet have voxel counts between 10% and 90% of the maximum number

possible, are given a fitness of 100. The remaining objects are given

a fitness of 1. For target evolution, the fitness is the percent of voxels

that matched the target object. To magnify differences in fitness values,

all fitness scores serve as an exponent to a large constant c = 2000 to

produce the final fitness value. The parameters are identical to a previ-

ous work [Clune et al., 2011], except mutations were allowed to be larger

(MutationPower = 2.5).

3 Results and Discussion

3.1 Interactive Evolution

We study interactive evolution because it allows an open-ended ex-

ploration of the design space of objects CPPNs can produce. Ad-

ditionally, interactive evolution avoids the greedy nature of target-

based evolution, potentially allowing it to access more interesting ob-

jects [Secretan et al., 2011, Lehman and Stanley, 2008]. A drawback of

interactive evolution is that it is subjective, but science should not aban-

don such a useful tool simply because it is subjective. While user

preferences bias the types of objects selected, the encoding has to

be able to produce such objects in the first place in order for them

to be selected. Different encodings will bias the types of patterns

evolved [Clune et al., 2011], meaning that interactive evolution can in-

form us about the biases and expressive power of the encoding.

Figure 3 shows example objects from different generations during a run

of interactive evolution. The geometric patterns become more complex

over generations, which reflects the property of complexification built

into NEAT [Stanley and Miikkulainen, 2002].
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Fig. 3: Representative objects from different generations of a single run of in-

teractive evolution. From top to bottom, rows display individuals from

generations 1, 15, and 33.

Figure 4 displays a few of the interesting objects discovered in differ-

ent runs, some of which had different inputs and parameters (described

below). It is important to note that these objects were chosen from a

small number of runs performed by one person, each of which was lim-

ited to tens or perhaps a few hundred generations. It is noteworthy that

such recognizable 3D forms emerge in such a small sample size. These

3D objects should not be held to the same standard as pictures from

picbreeder.org, where hundreds of users have published thousands of

images after performing over 150,000 evaluations across hundreds of

generations [Secretan et al., 2011].

The objects in Figure 4 exhibit many properties that are desirable both

for studying morphological evolution and harnessing it for engineer-

ing or artistic purposes. The objects are frequently regular, a prop-

erty which is important in engineering and for evolvability [Lipson, 2007,

Clune et al., 2011]. An important regularity is symmetry, which is evi-

dent with respect to different dimensions in many of the objects. For ex-

ample, all of the objects in generation 33 of Figure 3 are highly left-right

symmetric, and objects b7 and b8 in Figure 4 exhibit left-right and top-

bottom symmetries. Another useful regularity is repetition, which occurs

frequently in the evolved objects (e.g. the top-right object in Figure 3).

A further beneficial property is exhibiting regularity with varia-

tion [Stanley and Miikkulainen, 2003, Lipson, 2007, Clune et al., 2011].

For example, Figure 4b1 has a motif that appears like an animal head,

but is repeated in different sizes and with other subtle variations. Sym-

metric patterns with asymmetric variations can also be observed, such

as in Figure 4a8 and Figure 4b6.

It is important to note that humans often select regular, symmetri-

cal shapes, which increases their frequency in interactive evolution.

That said, biology and engineering also often reward regularity. Ad-

ditionally, it has been shown that when CPPNs generate artificial neu-

ral networks that control robots in target-based evolution, the neural

wiring patterns are often regular, including symmetries and repeated

themes [Clune et al., 2011], demonstrating that CPPNs produce regulari-

ties even without humans performing selection.

Most importantly, the evolved objects often look similar to natural forms

or engineered designs, revealing that CPPNs can produce the types of

objects we are interested in designing and studying with synthetic mor-

phological evolution. Humans can only select such such familiar forms if

an encoding tends to produce such designs, which has not been the case

for most previous generative encodings. People often describe Figure 4a2

and 4a3 as faces, 4a4 as a Jack-o’-lantern face, 4a5 as an animal figurine,

4a6 as an African statue of a human, 4a7 as a human female stomach,

4a8 as a human female torso, 4b1 and 4b4 as animals, 4b2 and 4b3 as

elephants, 4b5 as a human head and shoulders, 4b6 as a horned mask,

and 4b7 and 4b8 as spaceships. Some also describe 4b7 as a butterfly.

People describe other objects as interesting art, even though they do not

resemble any specific natural or human design (e.g. Figure 4a1). Such

objects can potentially spark artistic ideas for new forms. The fact that

the shapes consistently evoke human and natural designs demonstrates

the expressive power of the CPPN encoding to produce interesting 3D

objects.

An additional important property is that the offspring of the 3D CPPN

objects are similar to their parents, but are varied in interesting ways.

Some encodings lack this property in that mutations have dramatic ef-

fects, rendering most offspring very different from their parents, which

hinders evolvability [Stanley and Miikkulainen, 2003].
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Fig. 4: Example objects evolved with CPPNs via interactive evolution.

For example, Figure 4b4 is the child of Figure 4b3, and Figure 4b2 is their

close relative. All three are consistently described as animals, yet are

interesting variations on the animal theme. For example, only a single

generation of genetic changes between Figure 4b3 and Figure 4b4 trans-

formed what appears like an elephant with a trunk into something resem-

bling an elephant with warthog tusks. A different variant of Figure 4b3

that thickened the trunk can be seen in Figure 1 (center row, left), which

is next to a printed copy of Figure 4b3. Moreover, Figure 4b3, its relative

in Figure 1, and Figure 4b2 all evoke elephants, but they are quite differ-

ent objects, suggesting that the CPPN has captured some fundamental

aspects of the elephant concept that it expresses in different ways.

Some of the geometric complexity in the genome is not visible in these

3D phenotypes because a threshold determines the presence or absence

of a voxel. In contrast, picbreeder pictures have a continuum of outputs in

grayscale and color, which adds to their complexity. Pre-thresholded geo-

metric information could be useful, however, to make colored 3D objects,

or to have objects with multiple materials (e.g. the soft-robot equivalent

of muscle and bone).

To test whether the types of objects produced could be biased by the

CPPN inputs and parameters, we performed multiple runs of interactive

evolution with varying conditions. We initially provided only x, y, and

z values for each voxel. Even with this minimal information, regulari-

ties such as symmetries and repeating themes were common (Figure 3),

which is expected in a generative encoding with symmetric and repeat-

ing genomic functions. The objects in this setup seemed to require more

generations before they became interesting, and usually did not appear

like objects floating in space, but instead bordered the workspace wall.

We then added the distance from center as an input to the CPPN, which

picbreeder also has (in 2D) [Secretan et al., 2011]. This information more

frequently created rounded objects centered in space. Because the

distance-from-center function took the normalized values in each dimen-

sion, and the y (height) dimension was longer, an egg-shaped motif was

common (Figure 5, left three). All of the objects in Figure 4 have this

input. Preliminary experiments with other inputs also revealed interest-

ing biases in the resulting objects (not shown), suggesting a rich area of

research regarding how best to bias CPPNs with seed gradients.
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To date, no published results explore how patterns differ when recurrence

is allowed in CPPN genomes. We enabled recurrence and discovered that

the resulting patterns are qualitatively different in that they tend to in-

clude fractal patterns. For example, branching patterns emerged, such

as an object resembling a tree (Figure 6, left) and another evoking the

vascular system (Figure 6, center). Like with fractals, the complexity is

often concentrated at the surface boundary, producing a jagged surface

effect (e.g. Figure 6, right). Objects with recurrent genomes were much

more likely to have small, separated pieces floating in space.

Fig. 5: Objects evolved with a distance-from-center input (left three), which

frequently featured egg-shape motifs, and objects evolved with an ex-

panded set of genome functions (right three). The rightmost two images

show different angles of the same object. Facets in the right three ob-

jects result from a close zoom and because, for illustration, normals are

provided for facets instead of vertices.

Another interesting parameter of CPPNs is the set of possible genomic

node functions. No research published to date has tested different func-

tion sets on the same problem to understand how CPPN patterns are af-

fected by this parameter. Visual domains such as 3D objects are a helpful

place to start such explorations because of the intuition they provide. We

added a square, cosine, and sign-preserving square root function and

performed additional runs. Objects in these runs tend to be more com-

plex in earlier generations, and seem to involve both rounded and sharp

edges. Figure 4b7 and the rightmost three in Figure 5 are example ob-

jects evolved with this expanded genomic node function set.

Fig. 6: Example objects with recurrent genomes.

3.2 Target-based Evolution

A second way to explore the capabilities of CPPNs is to challenge them

to produce a target object. Knowing how CPPNs perform in 3D in target-

based evolution is helpful for numerous reasons. Initially, it serves as a

preliminary test of how CPPNs might perform on more open-ended, yet

still target-based problems, such as evolving robot morphologies to per-

form certain tasks (e.g. locomotion). Additionally, biologists would bene-

fit if they could repeatedly evolve various morphologies to study whether

certain developmental strategies for constructing 3D geometric patterns

arise frequently. Finally, target evolution allows an artist or engineer to

explore objects that are similar to a target object, yet differ in interesting

ways (similar to how Figure 4b4 and Figure 4b2 result from slight permu-

tations to the genome of Figure 4b3). Finally, target-based evolution is

much faster, enabling an exploration the effects of different parameter

settings, which can inform interactive evolution.
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The target object for this paper is shown in Figure 8a. It consists of four

partially-overlapping spheres, with the outer two halved by workspace

bounding box. This target has round shapes that are different from the

egg-shaped motif facilitated by the distance-from-center input, providing

a test of whether such a related input improves performance. Each treat-

ment has 20 runs with a population of 150 for 1000 generations, unless

otherwise specified.

The baseline treatment featured only x, y, and z inputs and the default set

of genome functions. The best performing object in each run captures the

long cylindrical shape of the target, but most attempts at rounded edges

are imperfect combinations of straight-line functions. All runs except one

failed to carve much material away between the spheres. An average

of 90.8% (± 0.003 SE) of voxels are matched (Figure 7), but the target

object is not identifiable until about ≥ 93% of voxels are matched. As

such, the small differences in fitness between the treatments in Figure 7

represent substantial differences in whether the target object is recog-

nizable. Interestingly, one outlier run in this treatment performed much

better than the rest (with 94.6% of voxels correct). It features rectan-

gular approximations of spheres (Figure 8b). The lack of round shapes

in this treatment corroborates the previous subjective observation from

interactive evolution that CPPNs can struggle to evolve and exploit round

gradients when they are not provided as inputs.

To test if seeding CPPNs with spherical gradients makes it easier to match

this rounded target, we added distance to the center as an input. The

CPPNs in the previous treatment could have evolved to calculate this

same information, but that may have been difficult. Surprisingly, this

information significantly lowered performance to 90.0% (± 0.002 SE,

p = 0.013, Mann-Whitney test, Figure 7). However, the evolved objects all

have smooth, round forms (Figure 8c-d), confirming that providing differ-

ent seed gradients can bias the types of evolved objects. While this might

be expected in early generations, it is interesting that the gradients pro-

vided have noticeable effects after a thousand generations. This result

is in line with a previous paper that found that the information input into

CPPNs can bias the resulting phenotypes [Clune et al., 2009]. We include

this input in the remaining treatments in this paper because it facilitates

round surfaces, even though it hurt performance in this experiment.

Because interactive evolution features smaller population sizes, it is

worthwhile to study how this difference affects the search for 3D objects.

Additionally, since NEAT complexifies genomes over evolutionary time,

having more generations may improve the search by accessing genomes

with more hidden nodes. We investigate these issues by decreasing the

population size from 150 to 15 and increasing the number of generations

tenfold to 104, which keeps the number of evaluated objects the same.

This change significantly improves performance to 91.8% (± 0.003 SE,

p < 0.001, Mann-Whitney test, Figure 7), suggesting that the small popu-

lation sizes in interactive evolution do not hurt, and may actually benefit,

morphological evolution with NEAT-based encodings. The evolved objects

tend to have more space carved out between the spheres (Figure 8e-f).

A fundamental evolutionary parameter that can greatly affect evolvabil-

ity is the mutation rate.We varied the major sources of mutation in NEAT

by altering the rate at which genomic links are added, removed, and

mutated, as well as the rate at which genomic nodes are added. Increas-

ing the node addition rate significantly boosted performance (p < 0.001,

Mann-Whitney test, Figure 7) to 91.5% (± 0.003 SE). Changing the other

mutation rate parameters did not improve performance (data not shown).

Because a smaller population with more generations was beneficial, and

because a higher mutation rate was beneficial, we tested whether both

changes together would outperform either alone. The combination did

improve performance to 92.0% (Figure 7), but the difference was not

significant (p > 0.05, Mann-Whitney test). We also found that the ex-

panded genome function set (described previously) improved performed

to 93.0%, which was significant (p = 0.022, Mann-Whitney test). As be-

fore, the objects in this treatment seemed to combine rounded surfaces

with sharper edges: while most were smooth (e.g. Figure 8g-h), a few

had rough patches on their surface, including Figure 8i. Adding recurrent

genomic connections to this treatment did not significantly affect perfor-

mance (93.3%, p > 0.05).

Overall, the target-based evolution experiments reveal that evolving

CPPNs can roughy match a target object. While a high percentage of

voxels were matched, the degree to which the evolved objects qualita-

tively resemble the target is subjective and debatable. The most impor-

tant contribution of these experiments is to better understand the way

in which target-based evolution is biased by different parameters. These

results are preliminary, however, until more tests can be conducted with

additional targets.
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It is also interesting that many of the evolved objects look designed for

a purpose. For example, many of the objects in Figure 8 seem like func-

tional and aesthetically attractive objects carved on a lathe, such as legs

from tables and chairs or posts from banisters and railings. One reason

this is surprising is because it could have been the case that the greedy

nature of target-based evolution would have gained improvements by

iteratively adding small patches of voxels that match a subset of the

overall space. Such a patchwork solution would not look as regular and

smooth as the objects that actually evolved, suggesting that CPPNs are

biased away from such a piecemeal strategy. Previous work has shown

that CPPNs have difficulty making exceptions to regular patterns when

evolving neural networks [Clune et al., 2011], which could explain why

the target object in this study was not matched one patch at a time. Such

a bias toward regularity may simultaneously explain the smoothness of

the evolved objects and why matching the final few percent of voxels is

so difficult.

Artists and engineers may actually benefit from the fact that the evolved

objects share some properties of the target, but are different in interest-

ing ways. This means that a designer can provide a seed object as a

target, and a series of objects can automatically be generated that are

aesthetically interesting variations on that seed concept (Figure 8).

3.3 Transferring Objects to the Physical World

Advances in 3D printing technologies make it possible to transfer evolved

objects into the physical world, which may help artists and engineers

benefit from this technology. To test whether CPPN objects maintained

their appearance and structural integrity in reality we printed them on a

Connex500 3D printer. The objects look similar to their simulated coun-

terparts and are structurally sound (Figure 1). One difference is that non-

contiguous pieces (e.g. the top of Figure6, left) are not held in place in

the physical world without additional scaffolding. By printing in a semi-

transparent material, we also discovered that none of the objects have

visible hollow areas embedded within them, although CPPNs can create

such negative spaces. While the gap between simulated and physical ob-

jects was not expected to be large for static objects, it is helpful to have

verified the fidelity of the transfer.

4 Conclusions and Future Work

This paper introduces an algorithm for evolving 3D objects with the CPPN

generative encoding, which is a computationally efficient abstraction of

biological development. We conducted both interactive and target-based

evolution to explore the ability of CPPNs to create complex objects, espe-

cially those that resemble natural and engineered designs.

A small, preliminary exploration of the design space of 3D CPPN objects

unearthed a diversity of objects that evoke natural and engineered forms.

Many of the objects featured regularities such as symmetry and repeti-

tion, with and without variation. Such properties are important for engi-

neering and evolvability [Lipson, 2007, Clune et al., 2011], and suggest

that CPPNs are a promising encoding for evolving useful and aestheti-

cally pleasing objects. To extend this research we are creating a web-

site like picbreeder.org [Secretan et al., 2011] where users can collabo-

ratively evolve 3D objects online, which will provide a much larger explo-

ration of the potential of this technology. It will also overcome the need

for any individual to perform all of the evaluations in a lineage and thus

allow more complex objects to evolve.

Experiments with target-based evolution on one target revealed how the

inputs and parameters of CPPNs can influence the types of objects they

evolve. The evolved objects roughly resemble the target, but do not

match it precisely. While the evolved objects share some properties of

the target, they also differ from it in interesting ways. This property could

help artists and engineers by providing 3D designs that are variations on

a seed concept. All of these conclusions are tentative, however, since ex-

periments were only conducted with one target. Future work is necessary

to determine whether these observations generalize.

While there are many useful applications for evolving static, single-

material 3D objects, this technology is also a stepping stone to evolving

objects that can move and that have multiple materials. In future work

we will evolve such soft-bodied robots in simulation and transfer them to

the physical world. Doing so will enable us to harness the power of evo-

lution and developmental biology to begin to create synthetic creatures

that have some of the exciting properties of their natural counterparts.
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Academic Search Portal

Odysci is a new web portal for search and rank of scientific articles pub-

lished in journals and conferences worldwide. Our objective is to provide

the best academic search engine available, along with a productive tech-

nical social-network environment.

Scientific information overload is a problem that afflicts scientists, devel-

opers, engineers and students. They are flooded with hundreds of publi-

cations all the time and it is difficult and time consuming to find the most

relevant publications that would really help them do their work. More-

over, publications are spread over multiple publishers’ sites and the user

needs to comb through them in order to find the most relevant ones.

Odysci addresses these problems by providing better ranking algorithms,

more flexible and powerful search options to users, and a technical col-

laboration environment for them to interact with peers. In addition,

Odysci aggregates publications from multiple publishers and makes them

available in one place. The end result is more productivity, less time

wasted reading useless publications, and better research and develop-

ment for users and their institutions.

Odysci offers new interesting ways to search and to allow the user to

control and narrow the results. For instance, a user can search for pa-

pers written by an author while he/she worked at a given place. To find

papers written by Leslie Lamport while at SRI, one would search for [au-

thor:lamport author@SRI]. Alternatively, a user can search for papers on

a given topic written by authors of a given institution. For example, the

search [Genetic Algorithms author@"University of Illinois”] will return pa-

pers on genetic algorithms written by Univ. of Illinois authors. One can

also search for papers which received awards. To search for the Best Pa-

pers in the GECCO conferences, one would use [venue:GECCO bp:true].

Besides search, the portal also offers: (a) Information about upcoming

conferences and deadlines, (b) Lists of best papers (and the ability to

search for them), and (c) Comments by experts in different fields (our

Online Editors). Another interesting feature is the ability for a user to

automatically find his/her own papers in our system and add them to their

profile page. We also have Alerts which allow a user/author to receive

a notification whenever a new paper is published that cites a paper by

him/her.

Collaboration facilities are also a main part of the portal. These are be-

ing driven by the goal of productive technical networking. More than a

place to list “connections”, in Odysci users can comment on papers, form

groups for sharing papers, and collaborate effectively with peers. We’ll

be releasing new features for that in the near future.

Odysci’s main research focuses on developing novel algorithms for data

de-duplication and ranking algorithms, since we consider the quality of

our data and ranking important aspects for the user. We currently list

around 2 million documents, including data from ACM, IEEE Computer So-

ciety, several other public databases and data gathered using crawlers.

New conferences and journals are added on a weekly basis.

We would like to invite the SIGEVO community to try out www.odysci.com

for search of research papers, and we welcome your feedback.

Webpage http://www.odysci.com

Blog http://blog.odysci.com

Twitter @odysci
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Beyond Biology
Designing a New Mechanism for Self-Replication
and Evolution at the Nanoscale

Rebecca Schulman, Chemical and Biomolecular Engineering, Johns Hopkins University, rschulm3@jhu.edu

As biology demonstrates, evolutionary algorithms are an extraordinar-

ily powerful way to design complex nanoscale systems. While we can

harness the biological apparatus for replicating and selecting DNA se-

quences to evolve enzymes and to some extent, organisms, we would like

to build replication machinery that would allow us to evolve designs for a

much wider variety of materials and systems. Here we describe work that

uses techniques from the new field of structural DNA nanotechnology to

modularly design nanoscale components that together can be assembled

into a system for self-replicating a new form of chemical information or

genome, and thus for evolving a new type of chemical sequence.

1 Introduction

A major current scientific challenge is to learn how to design materials

with nanoscale features and to exploit the unique properties of materials

available at this scale. Some of the benefits of nanoscale engineering

are widely familiar: the increasing density with which we can organize

transistors on a chip is largely responsible for the increasing speed of our

computers. But there are many other cases where nanoscale features

change the properties of materials in ways that we can exploit: for ex-

ample, the optical and electronic properties of nanometer-scale crystals

and wires can be dependent on their dimensions [27, 23].

Further, we expect that much of the engineering possibility at the

nanoscale remain to be discovered. Perhaps the most dramatic demon-

stration of the benefits that could be gain by having molecular-scale con-

trol over matter is biology. Inside cells, the production, transformation,

and functions of individual molecules are precisely controlled.

These features are essential to the capacity of biology for self-replication,

self-healing and metamorphosis. By having similar control over molecu-

lar synthesis and nanoscale geometry in synthetic systems, it should be

possible to achieve these features as well as many others in synthetic

materials.

Biology’s sophisticated architecture is the product of the Darwinian evo-

lution of a genomic sequence, an organism’s program for growth and

function. Evolution is therefore an extraordinarily powerful design strat-

egy for nanoscale materials and devices. And evolutionary algorithms

for molecular design such as SELEX for evolving RNA molecules with

catalytic function [22, 16] and directed evolution for evolving functional

proteins [2] have been more successful than comparable rational design

strategies.

But there is currently an important limitation on our ability to solve

molecular design problems using Darwinian evolution: we can only repli-

cate, and thus evolve, DNA or RNA sequences. This replication can take

place in cells or in the test tube, but in either case the form of the informa-

tion replicated, a sequence of nucleic acids, is the same. While changing

the representation of the information being evolved in an in silico process

is straightforward, translating the representation of chemical information

is extremely challenging.

Biology has figured out some mechanisms for accomplishing this repre-

sentation change: the “central dogma” of molecular biology is that DNA

can be transcribed into an RNA sequence and then translated into an

amino acid sequence, which folds into a protein; a set of proteins can

then together synthesize other molecules.
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But there is no obvious way to translate DNA sequence information into

instructions for autonomously constructing many structures we might be

interested in, such as silicon-based circuitry.

The chemical translation problem is not theoretically difficult, but difficult

in practice: even trying to augment the genetic code to include one new

kind of amino acid has been a major technical challenge [41]. In the past

decade, there have been initial attempts to build a more general in vitro

apparatus for translating DNA sequences into synthesis recipes [19, 20]

that might allow us to evolve a much wider array of products.

And at the same time, new technologies for designing libraries of pos-

sible sequences (i.e. controlling the mutation operation) have improved

the process of evolutionary design of proteins [21]. But because of the

challenges inherent to chemical translation, we might ask more gener-

ally whether evolving a sequence of 4 bases is the most efficient way to

solve all molecular design problems. In software, both the representation

of the information being evolved (as well as how this information is used

to produce the function being evolved) and the mechanism of mutation

are important for efficiently solving design problems using genetic and

evolutionary algorithms [25, 31]. If instead of evolving DNA sequences

that are replicated in cells or by enzymes extracted from cells, we could

design systems for molecular replication and mutation the way we can

design evolutionary algorithms, we might be able to solve a much wider

variety of chemical design problems and build new nanoscale materials

with evolution.

We are still far from being able to design arbitrary molecular machin-

ery capable of processes as complex as self-repli-cation de novo, and

we know only a little about which aspects of replication and evolution in

molecular systems are the major determinants of their efficiency [15, 7].

But important progress is being made: we are learning how to design

modular molecular components and how to combine these components

into functional molecular machines. And from these modular parts we

can begin to build devices for chemical self-replication.

Here we give an account of the development of components for a new

system for molecular information replication and of how evolution could

proceed in such a system. We first describe how we can design molecu-

lar components made from synthetic DNA, (short DNA sequences made

chemically in the laboratory rather than by enzymes within cells). The

component DNA sequences of these structures, arbitrary sequences of

A’s, T’s, G’s and C’s, can be designed and optimized on the computer. We

then describe how we can use synthetic DNA components, called DNA

tiles, in a self-assembly process. This self-assembly process is analogous

in some sense to solving a jigsaw puzzle and performs computation dur-

ing assembly.

That is, for any given computation, we can design a set of DNA tiles that

executes that computation via self-assembly. We describe how to design

a set of DNA tiles that copies a sequence of information during assembly.

The assembly process propagates the sequence; and when mechanical

forces fracture an assembly, new sites on the fragmented assembly be-

come available where the sequence can be propagated, increasing the

rate of sequence propagation. Cycles of sequence propagation (assem-

bly) and fragmentation exponentially replicate the sequences. We de-

scribe how to implement this process experimentally and how evolution

would occur in this system.

The processes we can design using synthetic DNA continue to increase

in both complex and variety. There are now several proposals for build-

ing systems for sequence replication (and thus Darwinian evolution) from

synthetic DNA components [47, 24]. As the set of systems available for

molecular sequence replication and evolution grows, we will have new

opportunities to both learn about evolution of physical systems and to

design efficient algorithms for evolution and selection in these new sys-

tems.

2 DNA Tiles and Algorithmic Self-Assembly

DNA is most familiar as the material in which our genome is stored.

What underlies DNA’s capacity for storing and replicating information is

its propensity for Watson-Crick complementary DNA bases to hybridize

and form double-helical DNA. Recently, DNA’s sequence specific binding

capacity has become an engineering tool: it is possible to design a se-

quence and its complement and to know that these two sequences will

bind but that they will not interact with other DNA molecules in the envi-

ronment.

In 1982, Nadrian Seeman described how synthetic DNA might be used

for nanoscale-construction. Seeman imagined using DNA molecules as

programmable molecular tinker-toys that would self-assemble into de-

signed structures because the complementary regions of the designed

sequences would hybridize while other sequences would not react. He
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described how we might make branched DNA structures, and thus pro-

gram the formation of 2- and 3-dimensional assemblies [37]. As Seeman

described it, nanotechnology could happen the way it does in biology: au-

tonomously – we would simply design the sequences, synthesize them,

and put them together in a test tube and wait.

Designing a system of DNA molecules has turned out to be more tractable

than the design of other types of complex molecular systems: the rate

of DNA hybridization and the stability of base-paired DNA are generally

predictable in polynomial time [48], and the double-helical structure of

hybridized DNA is well-characterized and largely independent of the par-

ticular based-paired sequence [8]. These properties have enabled the

design of extended 2- and 3-dimensional structures [45, 29, 4], pro-

grammed molecular machines [46, 5] and active structures [43, 46, 14]

via the design of a set of DNA molecules and their relative abundances.

A DNA “tile” (Figure 1a) is a primitive for nanoscale construction [17, 45].

A DNA tile consists of a double-stranded “core” and 4 single-stranded

“sticky ends.” Tiles attach to each other via sticky end hybridization and

can form extended two-dimensional lattices [45]. In principle, the ar-

rangement of tile types within the lattices that form can be designed by

designing appropriate DNA tile sticky end logic, a process akin conceptu-

ally to designing the pieces of a jigsaw puzzle and their interlocking nubs

(Figure 1b). Given a desired sticky end logic, we can design and synthe-

size a set of DNA sequences that assemble into tiles that implement this

logic (e.g. [45, 30, 3]).

Complex patterns can be constructed from DNA tiles efficiently by a tech-

nique known as algorithmic self-assembly [42]. The basic premise of al-

gorithmic self-assembly is that an object is constructed algorithmically,

that is by executing a program.

Algorithmic self-assembly has its roots in the tiling problem, the question

of whether a given set of shapes can tile the plane, which is undecid-

able [39, 40, 6]. Using observations derived from the hardness of plane

tiling, Winfree described a set of tiles and a constructive method for their

assembly that executes a computer program [42, 43].

In Winfree’s construction, growth of a tile crystal begins from a seed tile

or structure whose sticky ends encode the initial state of a computation.

Under physical conditions where tiles can attach to the seed only by two

sticky ends simultaneously (i.e. just cooler than the melting temperature

of the crystal), the growth of a DNA tile crystal, or lattice, can in princi-

ple simulate the execution a 1-dimensional blocked cellular automaton,

(a)

(b)

Fig. 1: DNA tiles and tile nanostructures. (a) A DNA tile is a nanoscale

construction primitive. Top, a molecular model of a tile that contains

short DNA molecules. Each strand is depicted in a different color. Bot-

tom, a schematic shows the effective shape of a tile along with the logic

of its sticky ends. Tile “cores” (e.g. the green portion of the schematic

tile shown here) are double-stranded; the assembled core maximizes the

number of Watson-Crick complementary base pairs between the compo-

nent strands and is therefore a favorable configuration. Single-stranded

“sticky ends” (the colored claws in the schematic) function as locks and

keys: they specifically hybridize (i.e. bind) to complementary sticky end

sequences on other tiles. (b) Tiles designed to form a 4-tile-wide ribbon,

and atomic force micrographs of the ribbons, which assembled as de-

signed. Scale bars are 500 nm (left) and 25 nm (right) (image from [33],

copyright Proceedings of the National Academy of Sciences, USA).

SIGEVOlution Volume 5, Issue 4 16



EDITORIAL

(a)

(b)

(c)

Fig. 2: Zig-zag tiles. (a) The basic zig-zag tile set. Each square and rectangle shown is a logical representation of the molecule shown to its left. (b) Zig-zag growth.

At each growth step, a new tile may be added at the location designated by the small arrow. Two alternating tile types in each row enforce the placement of

the double tiles on the top and bottom, ensuring that growth occurs in a zig-zag pattern. Although only growth on the right end of the molecule is shown here,

growth occurs simultaneously on both ends of the assembly. (c) The tile set shown in Figure 2b forms only one type of assembly. A tile set consisting of the tiles

in (b) and the four tiles shown here allows four types of assemblies to be formed. The vertical column of each type contains a crystal’s 2-bit binary sequence.
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and therefore perform universal computation. Intuitively, the two sticky

ends a tile must match in order to attach to a growing crystal are “in-

put” states to a cellular automaton and the remaining two sticky ends

are the “output” of a single computing step. Since growth can continue

indefinitely, arbitrarily long computations can be performed. Notably, the

entire history of a computation is stored in the arrangement of tile types

within the assembled crystal. In many cases this arrangement may form

a useful structure that is difficult to assemble by other means [13].

The assembly of the designed structure requires that at each step of

assembly a valid tile, i.e. a tile that matches two sticky end binding

sites simultaneously, be added to the crystal. However, in initial experi-

ments [30] as many as 1%-10% of attachments were errors, or not valid—

only one of the “input” edges of the tile matched the available inputs on

the growing crystal. The wrong logical operation was being performed at

those sites.

As would be expected of a computation in which 1–10% of the primi-

tive operations were computed incorrectly, the patterns that formed were

generally not the designed patterns.

The error rate can be reduced by logically redesigning the tiles to perform

the same computation during assembly, but more robustly. “Proofread-

ing” tile sets [44, 12, 28, 38] transform a tile set by replacing each indi-

vidual tile with a k×k block of tiles, exponentially reducing seeded growth

errors with respect to the size of the block. Along with the improvement

of the structure where computation begins, the “seed” [4] and new tech-

niques to prevent growth that does not begin from a seed, proofreading

techniques allowed assembly to proceed much more accurately, i.e. with

error rates as low as 1 in 1000 tiles. Structures such as Sierpinski gas-

kets [30, 18] and “binary counters” [3, 4] have been assembled using

these techniques.

3 Self-Replicating DNA Crystals

In 1966, Graham Cairns-Smith proposed a simple mechanism by which

polytypic clay crystals (clays that can take on one of many crystal

structures) could replicate information in the absence of biological en-

zymes [9, 10]. Some polytypic clay crystals contain discrete layers, each

of which contain molecules of a particular identity or orientation.

A cross-section of such a crystal can contain an information-bearing se-

quence. Cairns-Smith proposed that crystal growth could extend the lay-

ers, copying the sequence (the crystal’s genotype). Occasionally, phys-

ical forces could break a crystal apart. Because crystals replicate their

genotype many times during growth, splitting of a crystal can yield mul-

tiple pieces, each containing at least one copy of the information-bearing

sequence. Cycles of growth and fragmentation could therefore allow a

sequence to be exponentially amplified.

We have adapted Cairns-Smith’s ideas about spontaneous information

replication in crystals to design a system for self-replication using DNA

tiles as crystal monomers [32]. A simple set of DNA tiles can form zig-zag

crystals that can propagate information during growth [33, 4]. The tiles

shown in Figure 2a form the zig-zag crystal shown in Figure 2b. Matching

rules determine which tile fits where. Under conditions where each tile

addition must form two or more sticky end bonds (Figure 2a), growth is

constrained to occur in a zig-zag pattern. It is easy to confirm that under

such conditions, there is always a unique tile that may be added on each

end of the ribbon.

Zig-zag crystals are designed so that under conditions where a tile must

attach to a crystal by at least two bonds, growth produces one new row

at a time (i.e. one copy of a sequence) and continued growth repeat-

edly copies a sequence. The requirement that a tile must attach by two

bonds means that a tile being added must match both its vertical neigh-

bor (another tile that is part of the new column being assembled), and its

horizontal neighbor (in a previously assembled row).

Several tiles might match the label on the vertical neighbor, but because

tiles must make two correct bonds in order to join the assembly, only a

tile that also matches the label on the horizontal neighbor can be added.

The tile being added in the new column must therefore correspond to the

one in the previous column. As a result, information is inherited through

templated growth. The set of tiles formed by adding the tiles in Figure 2c

to those shown in Figure 2b can propagate one of four strings. Additional

tiles may be added to the set of tiles in Figures 2b and 2c to create a tile

set that can propagate arbitrary binary sequences.
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The growth of a zig-zag DNA crystal increases the number of copies of the

original information present in the ribbon but does not change the rate at

which new copies of the sequence are produced. The rate of copying can

be sped up by breaking the crystals. With each new crystal that is cre-

ated by breakage, two new “growth fronts” become available where tiles

can attach and information can be copied. Repeated cycles of growth

and breakage exponentially amplify an initial piece of information. Oc-

casionally, a tile matching only one bond rather than two will join the

assembly, resulting in occasional copying errors, which are also inher-

ited. If errors happen during copying, which they will under almost any

achievable condition [43], and crystals with particular sequences grow

faster than others, then evolution can occur.

4 Selection in Physical Systems

In general, in an evolutionary or genetic algorithm a population is gen-

erated and afterwards some portion of the individuals is selected on the

basis of their fitness. This subpopulation is used to create a population

for the next generation via mutation and/or recombination. In a physi-

cal system the process of filtering and creation of a population for the

next generation must be physically realizable, which is currently a strong

limitation. Many types of fitness that we would like to select for, such

as determining whether a molecule has a particular catalytic function,

are difficult to measure in practice, and the partitioning of molecules or

species based on their fitness is also challenging experimentally. While

molecular “tricks” can sometimes permit autonomous selection of fit in-

dividuals [16], there are no general methods for evolution and selection

based on function.

If we want to build novel systems for the evolution and selection of

molecules or other physical entities, therefore, we will also need to de-

velop ways to make this selection process easier. In biology, the desired

function is the capacity to reproduce quickly with respect to other indi-

viduals in a population. Could we tie function to this capacity in arti-

ficial systems? To answer this question we must first understand why

some species might replicate more quickly than others in a given self-

replication process. Below we examine why some DNA tile sequences

might be replicated more quickly than others, and consider as a result

what selection processes for “fit” DNA tile sequences might be feasible.

5 Evolution of DNA Crystals for Fast Growth:
The Royal Road

A selection process in a physical self-replicating system involves both

an environment (a set of resources for growth, their chemistry and the

ambient physical conditions) and an initial population of organisms (se-

quences).

In a DNA tile replication process, the environment includes a set of DNA

tiles. The set of DNA tiles determines the set of sequences which may be

copied and the “chemistry” of the system, i.e., the rules by which tiles

bind to each other. A particular arrangement of DNA tiles is the infor-

mation that is propagated in these experiments, the genotype; it is the

organism being evolved. The phenotype of a sequence is its replication

rate in the environment. In this section we first describe a tile set that

allows many kinds of sequences to grow and then how selection pressure

results from physical conditions in which the concentration of tile types

differ.

A DNA crystal grows by adding tiles. Tiles come in contact with the crystal

as the crystals and tiles diffuse randomly in the aqueous solution where

growth occurs. Generally this growth takes place in a well-mixed reaction

vessel, i.e. the density of crystals and monomers is on average uniform

across the reaction container. In this case, the higher the concentration

(i.e. density in solution) of a tile type that the vessel contains, the more

quickly a tile of that type will contact a crystal where it can be legally

added. Therefore, one simple selection pressure results from a difference

in concentration between tile types used to copy sequence information:

assemblies with sequences containing tile types present at high concen-

trations will grow faster than assemblies with sequences containing tile

types present at very low concentrations.

A tile set in which one of two bits can be propagated at each of n sequence

positions is shown in Figure 3a. Let Xi and Yi be the two tile types that

can be propagated at sequence position i. If Yi’s concentration is higher

than Xi’s concentration in solution, as suggested by the illustration in

Figure 3b, the resulting fitness landscape resembles the simplest case of

a well-studied problem in genetic algorithms, the “royal road” [26].
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Fig. 3: Royal Road Selection. (a) For a DNA tile ribbon containing sequences of width n, the Royal Road tile set contains 4n+ 2 tile types. Matching sticky ends

have identical labels. Each position of the sequence contains either a cyan time (from the left group of tile types) or magenta tile (from the right group of tile

types). (b) An environment where cyan tile types are present in higher concentrations than magenta tile types. (c) Selection in the environment in (b) favors

sequences containing cyan tiles, since cyan tiles will be added to crystals faster than magenta tiles.

The growth rate of a crystal is proportional to the number of Y ’s in the

sequence being propagated. For each position i, as long as the concen-

tration of Yi is higher than the concentration of Xi, sequences containing

only Yi tiles will be fitter and quickly dominate the population during a

selection process (Figure 3c).

6 Evolution of DNA Crystal Algorithms

The previous section demonstrates how the scarcity of tile resources can

lead to selection. But it does not address the question of how this selec-

tion could be used to evolve or improve a useful function of a molecular

system: in the Royal Road process as we described it, the evolution pro-

cess is a straightforward optimization problem with a known solution; no

function or algorithm is being discovered.

If in contrast the sequence being evolved were a template or directive for

an algorithm or device, the evolution process could select for functional

behavior. To achieve such functional evolution it is necessary to define

the language, or representation, of the information being evolved and

the process of translating this information into a particular function.

How could we make the information being replicated functional? DNA

crystals, as described in Section 2, can compute during growth as well

as copy information. We can use this capacity to build sequences that

function as programs. In fact, any program, no matter how complex,

can be selected for [34, 35]. Thus, DNA crystals can in principle evolve

powerful and complex functions. We review the mechanisms by which

such selections can occur here.

As we described in Section 2, DNA crystals can perform a computation

via the attachment of tiles to a growing crystal. A tile that can favorably

attach at a growth site must match two labels at the growth site, the

“input” labels. This simultaneous matching of two input labels is an ele-

mentary computing step. The other two labels on the attaching tile, the

output labels, determine which tiles can fit in subsequent growth sites, so

that information about the state of the computation is transmitted during

growth.

Collectively, these tile attachments can simulate a Turing machine [42]

where the initial state of the computation is determined by the structure

of the seed where tile assembly begins.
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It is also possible to build a set of tiles that function as a universal Turing

machine – the structure of the initial inputs on the seed determine which

computation occurs during growth [34, 11].

In principle, such a tile set can be expanded to make a tile set that builds

ribbons that have two parts – a segment that runs a program on the

universal Turing machine, and a segment that makes copies of this pro-

gram [34]. Such a zig-zag ribbon tile set would be a sort of “universal

alphabet,” with which we could build crystals that simultaneously store

a program (its genome), and run it. During replication, the program’s

source code would be inherited, and in an evolution process that used

this tile set, crystals containing particularly fit programs would be se-

lected for.

How could a program make a crystal fit? First, the execution of crys-

tal programs can build algorithmic patterns with potentially interesting

features [13] that we could test via an artificial selection process. If

we attached small devices to individual tiles, a program that built a bi-

nary counter might produce a pattern suitable for templating a demulti-

plexer circuit, for example [13]; other patterns might arrange molecules

or nanoparticles into a combinatorial ensemble of interesting geome-

tries. These assembled patterns could have optical, electronic or chem-

ical functionality that could be selected for (given an available selection

protocol), just as chemical functionality is currently selected for in SELEX

or directed evolution experiments.

A tile program could also be a control system for adaptively sensing and

responding to the environment. As we described in Section 5, the most

basic reason for fitness is rapid growth, and crystals which use tile types

that are abundant in the environment grow rapidly: a tile t is added at

an average rate
k f
[t] where k f is a tile-independent rate constant, and [t]

is the concentration (density in solution) of tile t. More generally, if we

disregard the frequency of fragmentation, the fitness of a crystal is pro-

portional to the time it takes to grow a crystal layer [35], which is the

sum of the times it takes to add each new tile in the layer. Thus, each tile

addition makes a contribution to a crystal’s fitness.

A fit crystal control program would be a program that could learn what tile

types are abundant and then adopt the growth process to use as many

of the most abundant tile types as possible.

One way for a tile program to continually use abundant (as opposed to

rare) tile types would be for the growing crystal executing the program

to read information about whether tiles are abundant or rare at speci-

fied growth sites where multiple tile types could attach. The program

could then use this input to determine which other tile types are abun-

dant and thus should be used for computation. Such a program could

be viewed as a sort of “metabolism” for crystals that figures out what

nutrients are available and uses the available nutrients for energy and

growth, in a process akin to metabolic sensing and response by biolog-

ical cells. This kind of “crystal” control system sounds primitive, but in

principle it could be arbitrarily complex: because crystals can simulate a

Turing machine, they can assemble a program that senses and responds

to any computable correlation between the abundances of tile types over

time. If the correlations between tile type concentrations were very com-

plex, then a very complex tile program to compute and take advantage

of these correlations would evolve.

This tile set and evolutionary process (the changing concentrations of

tile types over tile) could be a model system for studying evolution in

non-biological molecular systems: we have a quantitative model of crys-

tal behavior and the system as a whole and we have control over the

concentrations of each tile type. In contrast, in biological systems we

do not have control over many variables that are important to fitness,

and the system dynamics are largely not understood: even the best-

understood organisms produce hundreds of proteins whose functions are

not known [1].

And while tile concentrations are not generally quantities that have im-

mediate real-world interest, we could include modules in the growth envi-

ronment that translate signals of other types into tile concentrations [36].

These translation systems would function as separate components, i.e.

as molecular sensors that as output either produced or used up tiles,

thus changing their concentrations. In a more sophisticated tile-based

replication system, arrangements of tiles could themselves function as

sensors and thus have function.
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7 Conclusions

DNA tile crystal growth and scission is a novel synthetic mechanism for

molecular sequence self-replication. In principle, evolution in tile crys-

tal systems is as computationally rich as evolution in any system: if the

mutation rate during crystal growth could be made arbitrarily low, then

eventually any program, no matter how complex, can evolve if it is the

most fit program for the environment.

It may thus be that for physical systems, the capacity to perform univer-

sal computation and tie this computation in some way to the environment

may be sufficient for open-ended evolution in a self-replicating system.

In practice the speed of evolution and selection is also vital: if an evolu-

tionary optimization process took more time than the age of the universe

to complete, it would be of no practical interest. Thus what is needed

is a study of how to quickly and robustly evolve solutions to problems of

interest.

The challenge of evolving these structures in the laboratory will teach us

new things about how to encode evolutionary processes in physical, as

opposed to purely computational systems. The DNA crystals described

here replicate molecular information in one way. In the future we will

broaden our library of mechanisms for self-replicating systems which will

allow to grow closer to engineering evolutionary algorithms for a variety

of molecular design problems. It will also allow us to examine the trade-

offs in not only the implementation of an alphabet within a single self-

replicating mechanism, but also the trade-offs inherent in the design of

the mechanism itself.
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Evolutionary Computing: eurogp, evocop, evobio, evomusart and

evoapplications.
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Featuring the latest in theoretical and applied research, evo* topics in-

clude recent genetic programming challenges, evolutionary and other

meta-heuristic approaches for combinatorial optimization, evolutionary

algorithms, machine learning and data mining techniques in the bio-

sciences, in numerical optimization, in music and art domains, in image

analysis and signal processing, in hardware optimization and in a wide

range of applications to scientific, industrial, financial and other real-

world problems.

eurogp (flyer)

15th European Conference on Genetic Programming Papers are sought

on topics strongly related to the evolution of computer programs, ranging

from theoretical work to innovative applications.

evocop (flyer)

12th European Conference on Evolutionary Computation in Combinato-

rial Optimization Practical and theoretical contributions are invited, re-

lated to evolutionary computation techniques and other meta-heuristics

for solving combinatorial optimization problems.

evobio (flyer)

10th European Conference on Evolutionary Computation, Machine Learn-

ing and Data Mining in Computational Biology Emphasis is on evolu-

tionary computation and other advanced techniques addressing impor-

tant problems in molecular biology, proteomics, genomics and genetics,

that have been implemented and tested in simulations and on real-life

datasets.

evomusart (flyer)

1st International Conference and 10th European Event on Evolutionary

and Biologically Inspired Music, Sound, Art and Design

evoapplications (flyer)

European Conference on the Applications of Evolutionary Computation

evocomnet

9th European event on nature-inspired techniques for telecommu-

nication networks and other parallel and distributed systems

evocomplex

3rd European event on algorithms and complex systems

evofin

6th European event on evolutionary and natural computation in

finance and economics

evogames

4th European event on bio-inspired algorithms in games

evohot

7th European event on bio-inspired heuristics for design automa-

tion

evoiasp

14th European event on evolutionary computation in image anal-

ysis and signal processing

evonum

5th European event on bio-inspired algorithms for continuous pa-

rameter optimisation

evopar

1st European event on parallel and distributed Infrastructures

evorisk

1st European event on computational intelligence for risk man-

agement, security and defence applications

evostim

7th European event on nature-inspired techniques in scheduling,

planning and timetabling

evostoc

9th European event on evolutionary algorithms in stochastic and

dynamic environments

evotranslog

6th European event on evolutionary computation in transporta-

tion and logistics
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July 2012

GECCO 2012 - Genetic and Evolutionary Computation Conference

July 7-11, 2012, Philadelphia, PA, USA

Homepage: http://www.sigevo.org/gecco-2012

Deadline January 13, 2012

Author notification: March 13, 2012

Workshop and tutorial proposals submission: November 07, 2011

Notification of workshop and tutorial acceptance: November 28, 2011

The Genetic and Evolutionary Computation Conference (GECCO-2012)

will present the latest high-quality results in the growing field of genetic

and evolutionary computation.

Topics include: genetic algorithms, genetic programming, evolution

strategies, evolutionary programming, real-world applications, learning

classifier systems and other genetics-based machine learning, evolv-

able hardware, artificial life, adaptive behavior, ant colony optimization,

swarm intelligence, biological applications, evolutionary robotics, coevo-

lution, artificial immune systems, and more.

Organizers

General Chair: Jason Moore

Editor-in-Chief: Terence Soule

Publicity Chair: Xavier Llorá

Tutorials Chair: Gabriela Ochoa

Students Chair: Josh Bongard

Workshops Chair: Bill Rand

Competitions Chairs: Daniele Loiacono

Business Committee: Wolfgang Banzhaf

Marc Schoenauer

EC in Practice Chairs: Jörn Mehnen

Thomas Bartz-Beielstein,

David Davis

Important Dates

Paper Submission Deadline January 13, 2012

Decision Notification March 13, 2012

Camera-ready Submission April 9, 2012

To Propose a Tutorial or Workshop

A detailed call for workhop and tutorial proposals will be posted later

so stay tuned! Meanwhile, for enquiries regarding tutorials contact

gecco2012tutorials@sigevolution.org while for enquiries about work-

shops contact gecco2012workshops@sigevolution.org.

More Information

Visit www.sigevo.org/gecco-2012 for information about electronic sub-

mission procedures, formatting details, student travel grants, the latest

list of tutorials and workshop, late-breaking papers, and more.

Contact

For general help and administrative matters contact GECCO support at

gecco2012@sigevolution.org

GECCO is sponsored by the Association for Computing Machinery Special

Interest Group for Genetic and Evolutionary Computation.
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September 2012

PPSN 2012 – International Conference on Parallel Problem

Solving From Nature

September 1-5, 2012, Taormina, Italy

Homepage: http://www.dmi.unict.it/ppsn2012/

Call for paper: www

Email: ppsn2012@dmi.unict.it

Paper Submission Deadline: March 15, 2012

Author Notification: June 1, 2012

Workshop Proposals Submission: October 15, 2011

PPSN XII will showcase a wide range of topics in Natural Computing

including, but not restricted to: Evolutionary Computation, Quantum

Computation, Molecular Computation, Neural Computation, Artificial Life,

Swarm Intelligence, Artificial Ant Systems, Artificial Immune Systems,

Self-Organizing Systems, Emergent Behaviors, and Applications to Real-

World Problems.

Paper Presentation

Following the now well-established tradition of PPSN conferences, all ac-

cepted papers will be presented during small poster sessions of about 16

papers. Each session will contain papers from a wide variety of topics,

and will begin by a plenary quick overview of all papers in that session

by a major researcher in the field. Past experiences have shown that

such presentation format led to more interactions between participants

and to a deeper understanding of the papers. All accepted papers will be

published in the LNCS Proceedings.

Paper Submission

Researchers are invited to submit original work in the field of natural

computing as papers of not more than 10 pages. Authors are encouraged

to submit their papers in LaTeX. Papers must be submitted in Springer

Verlag’s LNCS style through the conference homepage, here.

IEEE Conference on Computational Intelligence and Games

(CIG-2012)

September 12-15, 2012, Granada, Spain

Homepage: http://geneura.ugr.es/cig2012/

Flyer: pdf

Submission deadline: April 15, 2012

Decision notification: June 1, 2012

Camera-ready submission: June 15, 2012

Conference: September 12-15, 2012

Aim and Scope

Games have proven to be an ideal domain for the study of computa-

tional intelligence as not only are they fun to play and interesting to

observe, but they provide competitive and dynamic environments that

model many real-world problems. Additionally, methods from compu-

tational intelligence promise to have a big impact on game technology

and development, assisting designers and developers and enabling new

types of computer games. The 2010 IEEE Conference on Computational

Intelligence and Games brings together leading researchers and practi-

tioners from academia and industry to discuss recent advances and ex-

plore future directions in this quickly moving field.
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Topics of interest include, but are not limited to:

Learning in games

Coevolution in games

Neural-based approaches for games

Fuzzy-based approaches for games

Player/Opponent modeling in games

CI/AI-based game design

Multi-agent and multi-strategy learning

Applications of game theory

CI for Player Affective Modeling

Intelligent Interactive Narrative

Imperfect information and non-deterministic games

Player satisfaction and experience in games

Theoretical or empirical analysis of CI techniques for games

Comparative studies and game-based benchmarking

Computational and artificial intelligence in:

• Video games

• Board and card games

• Economic or mathematical games

• Serious games

• Augmented and mixed-reality games

• Games for mobile platforms

The conference will consist of a single track of oral presentations, tutorial

and workshop/special sessions, and live competitions. The proceedings

will be placed in IEEE Xplore, and made freely available on the conference

website after the conference.

Conference Committee

General Chair: Antonio J. Fernández Leiva

Program Chairs: Simon Lucas, Sung-Bae Cho,

and Magy Seif El-Nasr

Publicity Chair: Antonio M. Mora García

Social Media Chair: Juan J. Merelo

Finance Chair: Pedro A. Castillo

Proceedings Chairs: Mike Preuss and Anna I. Esparcia

Competition Chair: Julian Togelius

Special Sessions and Tutorials Chair: Georgios Yannakakis

Local Chairs: Carlos Cotta Porras,

Antonio J. Fernández Leiva,

Antonio M. Mora García,

Juan J. Merelo,

and Pedro A. Castillo

Important Dates

Tutorial proposals: 15 March 2012

Paper submission: 15 April 2012

Decision Notification: 1 June 2012

Camera-ready: 15 June 2012

Conference: 12-15 September 2012

For more information please visit: http://geneura.ugr.es/cig2012/

Seventh International Conference on Swarm Intelligence

September 12-14, 2012. Brussels, Belgium

Homepage: http://iridia.ulb.ac.be/ants2012

Deadline March 2, 2012

Swarm intelligence is a relatively new discipline that deals with the

study of self-organizing processes both in nature and in artificial systems.

Researchers in ethology and animal behavior have proposed many mod-

els to explain interesting aspects of social insect behavior such as self-

organization and shape-formation. Recently, algorithms and methods in-

spired by these models have been proposed to solve difficult problems in

many domains.

An example of a particularly successful research direction in swarm intel-

ligence is ant colony optimization, the main focus of which is on discrete
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optimization problems. Ant colony optimization has been applied suc-

cessfully to a large number of difficult discrete optimization problems in-

cluding the traveling salesman problem, the quadratic assignment prob-

lem, scheduling, vehicle routing, etc., as well as to routing in telecom-

munication networks. Another interesting approach is that of particle

swarm optimization, that focuses on continuous optimization problems.

Here too, a number of successful applications can be found in the recent

literature. Swarm robotics is another relevant field. Here, the focus is on

applying swarm intelligence techniques to the control of large groups of

cooperating autonomous robots.

ANTS 2012 will give researchers in swarm intelligence the opportunity to

meet, to present their latest research, and to discuss current develop-

ments and applications.

The three-day conference will be held in Brussels, Belgium, on September

12-14, 2012.

Relevant Research Areas

ANTS 2012 solicits contributions dealing with any aspect of swarm intel-

ligence. Typical, but not exclusive, topics of interest are:

Behavioral models of social insects or other animal societies that

can stimulate new algorithmic approaches.

Empirical and theoretical research in swarm intelligence.

Application of swarm intelligence methods, such as ant colony opti-

mization or particle swarm optimization, to real-world problems.

Theoretical and experimental research in swarm robotics systems.

Publication Details Conference proceedings will be published by

Springer in the LNCS. series.

The journal Swarm Intelligence will publish a special issue dedicated to

ANTS 2012 that will contain extended versions of the best research works

presented at the conference. Further details will soon be published on the

web site.

Best Paper Award A best paper award will be presented at the confer-

ence.

Further Information Up-to-date information will be published on the

web site http://iridia.ulb.ac.be/ants2012/. For information about lo-

cal arrangements, registration forms, etc., please refer to the above-

mentioned web site or contact the local organizers at the address below.

Conference Address
ANTS 2012

IRIDIA CP 194/6 Tel +32-2-6502729

Université Libre de Bruxelles Fax +32-2-6502715

Av. F. D. Roosevelt 50 http://iridia.ulb.ac.be/ants2012

1050 Bruxelles, Belgium email: ants@iridia.ulb.ac.be

Important Dates

Submission deadline March 2, 2012

Notification of acceptance May 3, 2012

Camera ready copy May 17, 2012

Conference September 12–14, 2012
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About the Newsletter

SIGEVOlution is the newsletter of SIGEVO, the ACM Special Interest Group

on Genetic and Evolutionary Computation.

To join SIGEVO, please follow this link [WWW]

Contributing to SIGEVOlution

We solicit contributions in the following categories:

Art: Are you working with Evolutionary Art? We are always looking for

nice evolutionary art for the cover page of the newsletter.

Short surveys and position papers: We invite short surveys and po-

sition papers in EC and EC related areas. We are also interested in ap-

plications of EC technologies that have solved interesting and important

problems.

Software: Are you are a developer of an EC software and you wish to

tell us about it? Then, send us a short summary or a short tutorial of your

software.

Lost Gems: Did you read an interesting EC paper that, in your opinion,

did not receive enough attention or should be rediscovered? Then send

us a page about it.

Dissertations: We invite short summaries, around a page, of theses

in EC-related areas that have been recently discussed and are available

online.

Meetings Reports: Did you participate in an interesting EC-related

event? Would you be willing to tell us about it? Then, send us a short

summary, around half a page, about the event.

Forthcoming Events: If you have an EC event you wish to announce,

this is the place.

News and Announcements: Is there anything you wish to announce?

This is the place.

Letters: If you want to ask or to say something to SIGEVO members,

please write us a letter!

Suggestions: If you have a suggestion about how to improve the

newsletter, please send us an email.

Contributions will be reviewed by members of the newsletter board.

We accept contributions in LATEX, MS Word, and plain text.

Enquiries about submissions and contributions can be emailed to

editor@sigevolution.org.

All the issues of SIGEVOlution are also available online at

www.sigevolution.org.

Notice to Contributing Authors to SIG Newsletters

By submitting your article for distribution in the Special Interest Group

publication, you hereby grant to ACM the following non-exclusive, per-

petual, worldwide rights:

to publish in print on condition of acceptance by the editor

to digitize and post your article in the electronic version of this pub-

lication

to include the article in the ACM Digital Library

to allow users to copy and distribute the article for noncommercial,

educational or research purposes

However, as a contributing author, you retain copyright to your article

and ACM will make every effort to refer requests for commercial use di-

rectly to you.
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