Artificial Intelligence

Jeff Clune

Assistant Professor
Evolving Artificial Intelligence Laboratory

Al Challenge One

Al Challenge One

- Transform to graph
- Explore the graph, looking for?
 - dust
 - unexplored squares

Al Challenge One, Question 2

- Some good solutions
 - 2013 champ: 0.97
 - Move greedily towards dust or unexplored tiles in sensor range.
 - Otherwise start a BFS toward nearest unexplored tile.
 - 2014 champ: 0.98
 - BFS with a maximum depth of 2 towards either dust or unexplored tile
 - If nothing found: run simple reflex agent (move randomly for the most part)
 - 2015: 0.998 (!)
 - Uniform Cost Search (effectively BFS) toward dust first, if no known dust UCS toward unexplored tile instead
 - 2016: 0.9992 (!!!) & 0.9988 (!!)

Al Challenge One, Question 2

- Records broken this year on Q1 and Q3 too
- Nice work!

Al Challenge Three!

- Due: Sept. 25th
- This Sunday!

Evaluation Functions

- alpha-beta still needs to find leaves of the tree
 - too deep in many cases
- workaround: don't go to leaves, but instead estimate the expected value of an intermediate state

Value of these states?

Evaluation Functions

- humans use them
 - no one can "see ahead" to terminal states in chess
- effect of evaluation functions is large
 - a bad one will lead to bad play and vice versa
- must be fast
 - (that's the point...to save computation)
- Example from chess:
 - Sum of: Pawns (1), knight/bishop (3), rook (5), queen (9).
 - Possibly add "good pawn structure" (0.5), castle (0.5), etc.
 - Called "features"

Evaluation Functions

- Must decide what to conflate
 - learn value of each board state
 - vs. counting pieces
 - assumes layout doesn't matter
- Often a weighted linear sum is used:
 - E.g. value = 9*numQueen+5*numRook+1*numPawn...
 - assumes contributions are independent/non-interacting/ non-epistatic
 - to include interactions a non-linear function can be used

Evaluation Function

- Note: They are not part of the rules, must be learned
- Can be learned!
 - How would you do it?
 - In groups come up with as many ways as you can (and pick the one you'd recommend)

Evaluation Function

- Note: They are not part of the rules, must be learned
- Can be learned!
 - How would you do it?
 - In groups come up with as many ways as you can (and pick the one you'd recommend)
 - Ideas we won't talk about in detail
 - Evolve the weights in the linear weighted sum
 - Deep learning

Evaluation Function

- Monte Carlo ("rollouts")
 - random play to the end repeated N times to estimate state value
 - works pretty well with random play, though would be better with intelligent play
- UCT: more intelligent play
 - increasingly focuses search on promising areas discovered during random play

Evaluation Functions + Alpha Beta

- Can use Alpha Beta out of the box with evaluation functions
 - just pick a max-depth or other stopping criterion
 - or pick maxTimeAllowed and run iterative deepening until you run out of time

Lookup

- Silly to search millions of nodes to pick the opening move
- Can just lookup what to do in common situations
 - openings and endgames
 - read book for fascinating discussion of how much better Al is than humans at endgames
 - one series requires 517 moves but leads to a guaranteed checkmate!
- Usually after 10 moves the board state is rare enough that AI has to switch from lookup to search

Deep Blue

- regularly got to 14 ply
 - some forcing sequences went to 40ply
- 30 billion positions per move
- evaluation function had 8000 features!
- 4000 position opening book
- 700,000-game library of games to learn from
- all 5, and most 6-piece endgames solved
- nowadays better algos mean standard PCs can play well

Humans Can No Longer Win At...

- Humans can no longer win at...
 - Checkers (solved)
 - Chess
 - Othello
 - Scrabble
- Tie
 - backgammon
- Humans better at
 - · Go
 - Hopscotch

Is this out of date? If so, email me.

Humans Can No Longer Win At...

- Humans can no longer win at...
 - Checkers (solved)
 - Chess
 - Othello
 - Scrabble
 - · Go
- Tie
 - backgammon
- Humans better at
 - Hopscotch

Is this out of date?

If so, email me.

Go

- Branching factor too large: ~250 to ~361 (depending on source)
 - and games go for ~350 moves
- Evaluations to hard (so far!):
 - UCT
 - with extra tricks to suggest which plays to explore
 - (similar to killer move heuristic)
- Current programs can only compete on smaller boards

Wrong! Time to rewrite the textbooks!

Adversarial Search: Key concepts

- Pruning
- Evaluation function
 - evaluate intermediate game states since optimal search is impossible
- Minimax
- Alpha-beta pruning
 - saves time, without any cost in game performance
 - killer heuristic

Stochastic Games

• Examples?

Stochastic Games

- Instead of a minimax value, we calculate expected value
 - (value of each node) * (chance of that node occurring)
 - Which has higher expected utility/value?
 - Option 1: 50% chance of payoff=10, 50% chance of payoff=1
 - Option 2: 90% chance of payoff=6, 10% chance of payoff=0

Partially Observable Games

- E.g. war, bridge, etc.
 - my favorite is Stratego
- Gathering info becomes a move in some games
 - scouts/spies
- Bluffing is important

Ch. 13: Uncertainty

- Uncertainty is pervasive in the world
 - e.g. diagnosing an illness
- Goal: maximize expected utility/value
- Probability Theory is our best tool
 - Lots of help with basic equations & notation in the book

Bayesian Statistics

- Very important in Al
- Allow you to
 - have prior knowledge about the world
 - e.g. phones don't have cameras
 - update your knowledge of the world
 - e.g. now they do!
- Most of the important info is in Ch. 13.

Bayesian Statistics

Priors

- aka "unconditional probabilities" or "prior probabilities"
- belief before seeing evidence
 - e.g. most phones don't have cameras (belief in 2000)
 - P(mostPhonesHaveCameras)

Posterior

aka "conditional probabilities" or "posterior

Bayesian Statistics

- Prior
 - P(two dice sum to 12) = ??
- Posterior
 - P(two dice sum to 12 | Die1=6) = ??

Reminder About Probability

Mathematically speaking, conditional probabilities are defined in terms of unconditional probabilities as follows: for any propositions a and b, we have

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$
, Note: \land means "and" (13.3)

which holds whenever P(b) > 0. For example,

$$P(doubles \mid Die_1 = 5) = \frac{P(doubles \land Die_1 = 5)}{P(Die_1 = 5)}$$
.

The definition of conditional probability, Equation (13.3), can be written in a different form called the **product rule**:

$$P(a \wedge b) = P(a \mid b)P(b) ,$$

The product rule is perhaps easier to remember: it comes from the fact that, for a and b to be true, we need b to be true, and we also need a to be true given b.