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Abstract: This article provides a general overview of the
field now known as “evolutionary multi-objective opti-
mization,” which refers to the use of evolutionary algo-
rithms to solve problems with two or more (often
conflicting) objective functions. Using as a framework
the history of this discipline, we discuss some of the most
representative algorithms that have been developed so
far, as well as some of their applications. Also, we discuss
some of the methodological issues related to the use of
multi-objective evolutionary algorithms, as well as some
of the current and future research trends in the area.



O
ptimization using metaheuristics has become a very
popular research topic in the last few years [14]. Opti-
mization refers to finding the best possible solution to a
problem given a set of limitations (or constraints).

When dealing with a single objective to be optimized (e.g., the
cost of a design), we aim to find the best possible solution available
(called “global optimum’’), or at least a good approximation of it.

However, when devising optimization models for a prob-
lem, it is frequently the case that there is not one but several
objectives that we would like to optimize. In fact, it is normal-
ly the case that these objectives are in conflict with each other.
For example, when designing a bridge, we would like to mini-
mize its cost while maximizing its safety. These problems with
two or more objective functions are called “multi-objective’’
and require different mathematical and algorithmic tools than
those adopted to solve single-objective optimization problems.
In fact, even the notion of “optimality’’changes
when dealing with multi-objective optimization
problems. The general nonlinear single-objec-
tive optimization problem is as much an open
problem as the general nonlinear multi-objec-
tive optimization problem. Therefore, the use
of metaheuristics is a valid choice which, in fact, has rapidly
gained acceptance among researchers from a wide variety of
disciplines. From the several metaheuristics currently available,
evolutionary algorithms (which are based on the emulation of
the mechanism of natural selection) are among the most popu-
lar [35], [28]. Evolutionary algorithms have been popular in
single-objective optimization and, more recently, have also
become common in multi-objective optimization, in which
they present several advantages with respect to other tech-
niques, as we will see later on. In this article, we will provide
an overview of the field now called “evolutionary multi-
objective optimization,” which refers to the use of evolution-
ary algorithms to solve multi-objective optimization problems.
The overview will neither be comprehensive nor will discuss
in detail the many approaches currently available (more techni-
cal surveys with that sort of information already exist [5], [85],
[88]). Instead, it will be a historical tour that will try to illus-
trate the rapid development of this field. 

Basic Concepts
In an attempt to avoid the use of cumbersome mathematical
terms, we will provide only informal definitions of the main
concepts required to understand the rest of this article. It is
assumed, however, that the reader is familiar with the generali-
ties of evolutionary algorithms (if more background on this
topic is required, there are several good references that the
reader is invited to consult, such as [35], [28], [25]).

First, we need to define a multi-objective optimization
problem (MOP). A MOP is a problem which has two or more
objectives that we need to optimize simultaneously. It is
important to mention that there might be constraints imposed
on the objectives. It is also important to emphasize that it is
normally the case that the objectives of the MOP are in con-

flict with each other. If this is not the case, then a single solu-
tion exists for the MOP, and what we will discuss in the
remainder of this article no longer applies, because the
objectives can be optimized one by one, in sequential order
to find this single solution.

Most MOPs, however, do not lend themselves to a single
solution and have, instead, a set of solutions. Such solutions
are really “trade-offs’’ or good compromises among the
objectives. In order to generate these trade-off solutions, an
old notion of optimality is normally adopted. This notion of
optimality was originally introduced by Francis Ysidro Edge-
worth in 1881 [23] and later generalized by Vilfredo Pareto
in 1896 [69]. It is called Edgeworth-Pareto optimum or, simply,
Pareto optimum. In words, this definition says that a solution
to an MOP is Pareto optimal if there exists no other feasible
solution which would decrease some criterion without caus-

ing a simultaneous increase in at least one other criterion. It
should not be difficult to realize that the use of this concept
almost always gives not a single solution but a set of them,
which is called the Pareto optimal set. The vectors of the deci-
sion variables corresponding to the solutions included in the
Pareto optimal set are called nondominated. The plot of the
objective functions whose nondominated vectors are in the
Pareto optimal set is called the Pareto front. 

Why Evolutionary Algorithms?
The Operations Research community has developed
approaches to solve MOPs since the 1950s. Currently, a wide
variety of mathematical programming techniques to solve
MOPs are available in the specialized literature (see for example
[59], [24]). However, mathematical programming techniques
have certain limitations when tackling MOPs. For example,
many of them are susceptible to the shape of the Pareto front
and may not work when the Pareto front is concave or dis-
connected. Others require differentiability of the objective
functions and the constraints. Also, most of them only generate
a single solution from each run. Thus, several runs (using dif-
ferent starting points) are required in order to generate several
elements of the Pareto optimal set [59]. In contrast, evolution-
ary algorithms deal simultaneously with a set of possible solu-
tions (the so-called population) which allows us to find several
members of the Pareto optimal set in a single run of the algo-
rithm. Additionally, evolutionary algorithms are less susceptible
to the shape or continuity of the Pareto front (e.g., they can
easily deal with discontinuous and concave Pareto fronts).

The Origins of the Field
The first hint regarding the possibility of using evolutionary
algorithms to solve an MOP appears in a Ph.D. thesis from
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1967 [74] in which, however, no actual multi-objective evo-
lutionary algorithm (MOEA) was developed (the multi-
objective problem was restated as a single-objective problem
and solved with a genetic algorithm). Although there is a
rarely mentioned attempt to use a genetic algorithm to solve
a multi-objective optimization problem from 1983 (see [43]),
David Schaffer is normally considered to be the first to have
designed an MOEA during the mid-1980s [76], [77]. Schaf-
fer’s approach, called Vector Evaluated Genetic Algorithm
(VEGA) consists of a simple genetic algorithm with a modi-
fied selection mechanism. At each generation, a number of
sub-populations were generated by performing proportional
selection according to each objective function in turn. These
sub-populations would then be shuffled together to obtain a
new population, on which the GA would apply the crossover
and mutation operators in the usual way. VEGA had a num-

ber of problems, from which the main one had to do with its
inability to retain solutions with acceptable performance, per-
haps above average, but not outstanding for any of the objec-
tive functions. These solutions were perhaps good candidates
for becoming nondominated solutions, but could not survive
under the selection scheme of this approach. 

The First Generation: Emphasis on Simplicity
After VEGA, researchers adopted for several years other naive
approaches. The most popular were the linear aggregating
functions, which consist in adding all the objective functions
into a single value which is directly adopted as the fitness of an
evolutionary algorithm [26]. Nonlinear aggregating functions
were also popular [6]. Lexicographic ordering was another
interesting choice. In this case, a single objective (which is
considered the most important) is chosen and optimized with-
out considering any of the others. Then, the second objective
is optimized but without decreasing the quality of the solution
obtained for the first objective. This process is repeated for all
the remaining objectives [33]. 

Despite all these early efforts, the direct incorporation of
the concept of Pareto optimality into an evolutionary algo-
rithm was first hinted by David E. Goldberg in his seminal
book on genetic algorithms [35]. While criticizing Schaf-
fer’s VEGA, Goldberg suggested the use of nondominated
ranking and selection to move a population toward the
Pareto front in a multi-objective optimization problem.
The basic idea is to find the set of solutions in the popula-
tion that are Pareto nondominated by the rest of the popu-
lation. These solutions are then assigned the highest rank
and eliminated from further contention. Another set of
Pareto nondominated solutions is determined from the

remaining population and are assigned the next highest
rank.This process continues until all the population is suit-
ably ranked. Goldberg also suggested the use of some kind
of niching technique to keep the GA from converging to a
single point on the front. A niching mechanism such as fit-
ness sharing [36] would allow the evolutionary algorithm to
maintain individuals along the nondominated frontier.
Goldberg did not provide an actual implementation of his
procedure, but practically all the MOEAs developed after
the publication of his book were influenced by his ideas.
From the several MOEAs developed from 1989 to 1998,
the most representative are the following: 
1. Nondominated Sorting Genetic Algorithm (NSGA):

This algorithm was proposed by Srinivas and Deb [80], and
was the first to be published in a specialized journal (Evolu-
tionary Computation). The NSGA is based on several layers

of classifications of the individuals as sug-
gested by Goldberg [35]. Before selection is
performed, the population is ranked on the
basis of nondomination: all nondominated
individuals are classified into one category
(with a dummy fitness value, which is pro-
portional to the population size, to provide

an equal reproductive potential for these individuals). To
maintain the diversity of the population, these classified
individuals are shared with their dummy fitness values.
Then this group of classified individuals is ignored and
another layer of nondominated individuals is considered.
The process continues until all individuals in the popula-
tion are classified. Since individuals in the first front have
the maximum fitness value, they always get more copies
than the rest of the population. The algorithm of the
NSGA is not very efficient, because Pareto ranking has to
be repeated over an over again. Evidently, it is possible to
achieve the same goal in a more efficient way.

2. Niched-Pareto Genetic Algorithm (NPGA): Proposed
in [40]. The NPGA uses a tournament selection scheme
based on Pareto dominance. The basic idea of the algo-
rithm is quite clever: Two individuals are randomly chosen
and compared against a subset from the entire population
(typically, around 10% of the population). If one of them is
dominated (by the individuals randomly chosen from the
population) and the other is not, then the nondominated
individual wins. All the other situations are considered a tie
(i.e., both competitors are either dominated or nondomi-
nated). When there is a tie, the result of the tournament is
decided through fitness sharing. 

3. Multi-Objective Genetic Algorithm (MOGA): Pro-
posed in [29]. In MOGA, the rank of a certain individual
corresponds to the number of chromosomes in the cur-
rent population by which it is dominated. All nondomi-
nated individuals are assigned the highest possible fitness
value (all of them get the same fitness, such that they can
be sampled at the same rate), while dominated ones are
penalized according to the population density of the
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corresponding region to which they belong (i.e., fitness
sharing is used to verify how crowded is the region sur-
rounding each individual).
During the first generation, few people performed compar-

ative studies among different MOEAs. However, those who
compared the three previous MOEAs unanimously agreed on
the superiority of MOGA, followed by the NPGA and by the
NSGA (in a distant third place) [84]. This period was charac-
terized by the simplicity of the algorithms proposed and by the
lack of methodology to validate them. No standard test func-
tions were available and comparisons were normally done
visually (no performance measures were available).

There is, however, an important result during this period
that is normally disregarded. Masahi-
ro Tanaka (see Figure 1) [82] devel-
oped the first scheme to incorporate
user’s preferences into an MOEA.
This is a very important topic, since
in real-world applications it is nor-
mally the case that the user does not
need the entire Pareto optimal set,
but only a small portion of it (or per-
haps only a single solution). Thus, it
is normally desirable that the user
can define certain preferences that
can narrow the search and that can

magnify certain portions of the Pareto front. For many years,
however, few researchers in this area paid attention to this
issue (see for example [12]).

Another important event during the first generation, was
the publication of the first survey of the field. Fonseca and
Fleming published such survey in the journal Evolutionary
Computation in 1995 [30]. Carlos M. Fonseca (see Figure 2)
also proposed the first performance measure that did not
require the true Pareto front of the problem beforehand
(see [31]), and was also the first to suggest a way of modify-
ing the Pareto dominance relationship in order to handle
constraints [32]. The main lesson learned from the first gen-
eration was that a successful MOEA had to combine a good
mechanism to select nondominated individuals (perhaps,
but not necessarily, based on the concept of Pareto optimal-
ity) combined with a good mechanism to maintain diversity

(fitness sharing was a choice, but
not the only one). The question
was: can we design more efficient
algorithms while keeping at least
the effectiveness achieved by first
generation MOEAs? 

The Second Generation:
Emphasis on Efficiency
From the author’s perspective, a
second generation of MOEAs start-
ed when elitism became a standard
mechanism. Although there were

some early studies that considered
the notion of elitism in an MOEA
(see for example [42]), most authors
credit Eckart Zitzler (see Figure 3)
with the formal introduction of this
concept in an MOEA, mainly
because his Strength Pareto Evolution-
ary Algorithm (SPEA) was published
in a specialized journal (the IEEE
Transactions on Evolutionary Compu-
tation), [92] which made it a land-
mark in the field. Needless to say,
after the publication of this paper, most researchers in the
field started to incorporate external populations in their
MOEAs and the use of this mechanism (or an alternative
form of elitism) became a common practice. In fact, the use
of elitism is a theoretical requirement in order to guarantee
convergence of an MOEA and therefore its importance [75]. 

In the context of multi-objective optimization, elitism usu-
ally (although not necessarily) refers to the use of an external
population (also called secondary population) to retain the
nondominated individuals found along the evolutionary
process. The main motivation for this mechanism is the fact
that a solution that is nondominated with respect to its current
population is not necessarily nondominated with respect to all
the populations that are produced by an evolutionary algo-
rithm. Thus, what we need is a way of guaranteeing that the
solutions that we will report to the user are nondominated
with respect to every other solution that our algorithm has
produced. Therefore, the most intuitive way of doing this is by
storing in an external memory (or archive) all the nondominat-
ed solutions found. If a solution that wishes to enter the
archive is dominated by its contents, then it is not allowed to
enter. Conversely, if a solution dominates anyone stored in the
file, the dominated solution must be deleted. The use of this
external file raises several questions: 
❏ How does the external file interact with the main popula-

tion? In other words, do we select individuals from the
union of the main population and the external file?, or do
we select only from the main population, ignoring the con-
tents of the external file? 

❏ What do we do when the external file is full (assuming that
the capacity of the external file is bound)? Since memory
capabilities are always limited, this issue deserves special
attention. 

❏ Do we impose additional criteria for a nondominated solu-
tion to be allowed to enter the file rather than just using
Pareto dominance (e.g., use the distribution of solutions as
an additional criterion)?
These and some other issues related to external archives

(also called “elite’’ archives) have been studied both from an
empirical and from a theoretical perspective (see for exam-
ple [49], [27]). Besides the use of an external file, elitism
can also be introduced through the use of a (µ + λ)-selec-
tion in which parents compete with their children and

FIGURE 1  Masahiro
Tanaka.

FIGURE 3  Eckart Zitzler.

FIGURE 2  Carlos M.
Fonseca.
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those which are nondominated (and possibly comply with
some additional criterion such as providing a better distrib-
ution of solutions) are selected for the following generation.
Many MOEAs have been proposed during the second gen-
eration (which we are still living today). However, most
researchers will agree that few of these approaches have
been adopted as a reference or have been used by others.

The author considers that the most representative MOEAs
of the second generation are the following:
1. Strength Pareto Evolutionary Algorithm (SPEA): This

algorithm was introduced in [91], [92]. This approach was
conceived as a way of integrating different MOEAs. SPEA
uses an archive containing nondominated solutions previ-
ously found (the so-called external nondominated set). At
each generation, nondominated individuals are copied to
the external nondominated set. For each individual in this
external set, a strength value is computed. This strength is
similar to the ranking value of MOGA [29], since it is pro-
portional to the number of solutions to which a certain
individual dominates. In SPEA, the fitness of each member
of the current population is computed according to the
strengths of all external nondominated solutions that domi-
nate it. The fitness assignment process of SPEA considers
both closeness to the true Pareto front and even distribu-
tion of solutions at the same time. Thus, instead of using
niches based on distance, Pareto dominance is used to
ensure that the solutions are properly distributed along the
Pareto front. Although this approach does not require a
niche radius, its effectiveness relies on the size of the exter-
nal nondominated set. In fact, since the external nondomi-
nated set participates in the selection process of SPEA, if its
size grows too large, it might reduce the selection pressure,
thus slowing down the search. Because of this, the authors
decided to adopt a technique that prunes the contents of

the external nondominated set so
that its size remains below a cer-
tain threshold. 

2. Strength Pareto Evolutionary
Algorithm 2 (SPEA2): SPEA2
has three main differences with
respect to its predecessor [89]:
(1) it incorporates a fine-grained
fitness assignment strategy
which takes into account for
each individual the number of
individuals that dominate it and
the number of individuals by

which it is dominated; (2) it uses a nearest neighbor den-
sity estimation technique which guides the search more
efficiently, and (3) it has an enhanced archive truncation
method that guarantees the preservation of boundary
solutions.

3. Pareto Archived Evolution Strategy (PAES): This
algorithm was introduced in [52]. PAES consists of a

(1 + 1) evolution strategy (i.e., a single
parent that generates a single offspring) in
combination with a historical archive that
records the nondominated solutions previ-
ously found. This archive is used as a refer-
ence set against which each mutated
individual is being compared. Such a his-
torical archive is the elitist mechanism

adopted in PAES. However, an interesting aspect of this
algorithm is the procedure used to maintain diversity
which consists of a crowding procedure that divides
objective space in a recursive manner. Each solution is
placed in a certain grid location based on the values of its
objectives (which are used as its “coordinates’’ or “geo-
graphical location’’). A map of such grid is maintained,
indicating the number of solutions that reside in each grid
location. Since the procedure is adaptive, no extra para-
meters are required (except for the number of divisions of
the objective space). This adaptive grid (or variations of
it) has been adopted by several modern MOEAs (e.g.,
[10]), and is the contribution by which Joshua D.
Knowles (see Figure 4) is more well-known, although he
has made several other significant contributions to the
field (e.g., [49]–[51]).

4. Nondominated Sorting Genetic Algorithm II
(NSGA-II): This approach was introduced in [19], [20] as
an improved version of the NSGA [80]1. In the NSGA-
II, for each solution one has to determine how many
solutions dominate it and the set of solutions to which it
dominates.The NSGA-II estimates the density of solu-
tions surrounding a particular solution in the population
by computing the average distance of two points on
either side of this point along each of the objectives of
the problem. This value is the so-called crowding distance.
During selection, the NSGA-II uses a crowded-compari-
son operator which takes into consideration both the
nondomination rank of an individual in the population
and its crowding distance (i.e., nondominated solutions
are preferred over dominated solutions, but between two
solutions with the same nondomination rank, the one
that resides in the less crowded region is preferred). The
NSGA-II does not use an external memory as the other
MOEAs previously discussed. Instead, the elitist mecha-
nism of the NSGA-II consists of combining the best par-

FIGURE 4  Joshua D.
Knowles.

1Note however that the differences between the NSGA-II and the NSGA are so 
significantthat they are considered as two completely different algorithms by several-
researchers.

During the second generation, researchers raised
concerns about efficiency both at an algorithmic level
and at the data structures level.
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ents with the best offspring obtained (i.e., a (µ + λ)-
selection). Due to its clever mechanisms, the NSGA-II is
much more efficient (computationally speaking) than its
predecessor, and its performance is so good, that it has
become very popular in the last few years, becoming a
landmark against which other multi-objective evolution-
ary algorithms have to be compared.
Many other algorithms have been proposed during the sec-

ond generation (see for example [10], [16], [15]). Also, fitness
sharing is no longer the only alternative to maintain diversity,
since several other approaches have been proposed. Besides the
adaptive grid from PAES, researchers have adopted clustering
techniques [61], crowding [20], entropy [48], and geometrically-
based approaches [86], among other mechanisms. Additionally,
some researchers have also adopted mating restriction schemes
[62]. More recently, the use of relaxed forms of Pareto domi-
nance has been adopted as a mechanism to encourage more
exploration and, therefore, to provide more diversity. From
these mechanisms, ε-dominance has become increasingly pop-
ular, not only because of its effectiveness, but also because of
its sound theoretical foundation [56]. Also, new surveys on
evolutionary multi-objective optimization were published dur-
ing this period, as well as several monographic books [18],
[12], [13], [81], [67].

During the second generation, many other aspects were
emphasized. The main one has been, with no doubt, efficiency.
Researchers raised concerns about efficiency both at an algo-
rithmic level and at the data structures level [45], [51]. The
increasing number of publications during the second genera-
tion (from the end of 1998 to date) makes us wonder what
will the third generation have to offer.

Methodological Issues
During the second generation, several researchers proposed a
variety of performance measures to allow a quantitative (rather
than only qualitative) comparison of results [87], [31], [92].
Zitzler et al. [87] stated that, when assessing performance of an
MOEA, one was interested in measuring three things:
1. Maximize the number of elements of the Pareto optimal

set found.
2. Minimize the distance of the Pareto front produced by

our algorithm with respect to the global Pareto front
(assuming we know its location).

3. Maximize the spread of solutions found, so that we can have
a distribution of vectors as smooth and uniform as possible.
This, however, raised some issues. First, it was required to

know beforehand the exact location of the true Pareto front of
a problem in order to use a performance measure. This may
not be possible in real-world problems in which the location
of the true Pareto front is unknown. The second issue was that
it is unlikely that a single performance measure can assess the
three things indicated by Zitzler et al. [87]. In other words,
assessing the performance of an MOEA is, also, a MOP! Once
researchers started to propose performance measures, criticisms
arose. Some researchers realized (empirically) that many of the

new performance measures were biased. In other words, there
were cases in which they provided results that did not corre-
spond to what we could see from the graphical representation
of the results (see for example [84]). Ironically, many
researchers went back to the graphical comparisons when sus-
pected that something was wrong
with the numerical results produced
from applying the performance mea-
sures available. Although slowly,
researchers started to propose a dif-
ferent type of performance measures
that considered not one algorithm at
a time, but two [31], [92]. These
performance measures were called
“binary’’ (in contrast to those that
assess performance of a single algo-
rithm at a time, which were called
“unary’’). In 2002, the truth was
finally in the open: Unary perfor-
mance measures are not compliant with Pareto dominance
and, therefore, are not reliable [90], [93]. Not everything is
lost, however, since binary performance measures can over-
come this limitation [88], [93].

Concurrently with the research on performance measures,
other researchers were designing test functions. The most
remarkable work in this regard is due to Kalyanmoy Deb (see
Figure 5) who proposed in 1999 a methodology to design
MOPs that was widely used during several years [17]. Later on,
an alternative set of test functions was proposed, but this time,
due to their characteristics, no enumerative process was
required to generate their true Pareto front [21], [22]. Consid-
ering that these test functions are also scalable, their use has
become widespread. So, today, researchers in the field normally
validate their MOEAs with problems having three or more
objective functions, and 10 or more decision variables.

Applications
MOEAs have become increasingly popular in a wide variety of
application domains, as reflects a recent book entirely devoted
to this topic [9]. In order to provide a rough idea of the sort of
applications that are being tackled in the current literature, we
will classify the applications in three large groups: engineering,
industrial and scientific. Some specific areas within each of
these groups are indicated next. We will start with the engi-
neering applications, which are, by far, the most popular in the
literature, perhaps due to the fact that engineering problems
have well-studied mathematical models. A representative sam-
ple of engineering applications is the following:
❏ Electrical engineering [73]
❏ Hydraulic engineering [63]
❏ Structural engineering [37]
❏ Aeronautical engineering [4]
❏ Robotics and Control [70], [60]
A representative sample of industrial applications is the 

following:
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❏ Design and manufacture [47]
❏ Scheduling [39]
❏ Management [66]
Finally, we have a variety of scientific applications:
❏ Chemistry [57]
❏ Physics [58]
❏ Medicine [55]
❏ Computer science [34]

The strong interest for using MOEAs in so many different
disciplines reinforces the idea stated at the beginning of this
article regarding the multi-objective nature of many real-world
problems. However, some application domains have received
relatively little attention from researchers are represent areas of
opportunity. For example: cellular automata [64], pattern
recognition [65], data mining [68], bioinformatics [41], and
financial applications [78].

Current Research Trends
From the author’s perspective, researchers haven’t produced
another breakthrough that is so significant (as elitism) as to
redirect most of the research into a new direction. Thus, the
third generation is yet to appear. However, there are several
interesting ideas that have certainly influenced a lot of the
work being done these days and which deserve closer atten-
tion. Some examples are the following:
❏ The use of relaxed forms of Pareto dominance has become

popular as a mechanism to regulate convergence of an
MOEA. From these mechanisms,  ε-dominance is, with
no doubt, the most popular [56], but it is not the only
mechanism of this type (see for example [54]). ε-domi-
nance allows to control the granularity of the approxima-
tion of the Pareto front obtained. As a consequence, it is
possible to accelerate convergence using this mechanism
(if we are satisfied with a very coarse approximation of the
Pareto front).

❏ The transformation of single-objective problems into a
multi-objective form that somehow facilitates their solu-
tion. For example, some researchers have proposed the
handling of the constraints of a problem as objectives 
[8], and others have proposed the so-called “multi-
objectivization’’ by which a single-objective optimization
problem is decomposed into several subcomponents con-
sidering a multi-objective approach [44], [53]. This proce-
dure has been found to be helpful in removing local
optima from a problem and has attracted a lot of attention
in the last few years.

❏ The use of alternative bio-inspired heuristics for multi-
objective optimization. The most remarkable examples
are particle swarm optimization [46] and differential evo-
lution [71], whose use has become increasingly popular in
multi-objective optimization (see for example [1], [11]).
However, other bio-inspired algorithms such as artificial
immune systems and ant colony optimization have also
been used to solve multi-objective optimization problems
[7], [38].

Future Research Trends
There are several topics involving challenges that will keep
busy to the researchers in this area for the next few years.
Some of them are the following: 
❏ Parameter control is certainly a topic that has been only

scarcely explored in MOEAs. Is it possible to design an
MOEA that self-adapts its parameters such that the user
doesn’t have to fine-tune them by hand? Some
researchers have proposed a few self-adaptation and on-
line adaptation procedures for MOEAs (see for example
[83], [3]), but recently, not much work seems to be
going in this direction.

❏ What is the minimum number of fitness function evalua-
tions that are actually required to achieve a minimum
desirable performance with an MOEA? Recently, some
researchers have proposed the use of black-box optimiza-
tion techniques normally adopted in engineering to per-
form an incredibly low number of fitness function
evaluations while still producing reasonably good solu-
tions (see for example [51]). However, this sort of
approach is inherently limited to problems of low dimen-
sionality. So, the question is: are there any other ways of
reducing the number of evaluations without sacrificing
dimensionality? 

❏ The development of implementations of MOEAs that are
independent of the platform and programming language in
which they were developed is an important step towards a
common platform that can be used to validate new algo-
rithms. In this direction, PISA (A Platform and program-
ming language independent Interface for Search
Algorithms) [2] constitutes an important step, and more
work is expected in this direction. 

❏ How to deal with problems that have “many’’ objectives?
Some recent studies have shown that traditional Pareto
ranking schemes do not behave well in the presence of
many objectives (where “many’’ is normally a number
above 3 or 4) [72]. 

❏ There are plenty of fundamental questions that remain
unanswered. For example: what are the sources of difficulty
of a multi-objective optimization problem for an MOEA?
What are the dimensionality limitations of current MOEAs?
Can we use alternative mechanisms into an evolutionary
algorithm to generate nondominated solutions without
relying on Pareto ranking (e.g., adopting concepts from
game theory [79])?

Conclusions
Using as a basis a historical framework, we have attempted to pro-
vide a general overview of the work that has been done in the last
twenty years in evolutionary multi-objective optimization. Many
details were left out due to obvious space limitations, but the most
significant achievements to date were at least mentioned. Our dis-
cussion included algorithms, methods to maintain diversity,
methodological issues and applications. Some of the most repre-
sentative current research trends were also discussed, and in the
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last part of the article, the author provided his own insights
regarding the future of the field. We are still awaiting for the third
generation to arrive. As more papers get published in this area2, it
gets harder every day to produce new contributions that are truly
significant. So, we wonder what sort of change will make it possi-
ble to shift the research trends in an entirely new direction.
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