Unshackling evolution: evolving soft robots with multiple
materials and a powerful generative encoding
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ABSTRACT

In 1994 Karl Sims showed that computational evolution can
produce interesting morphologies that resemble natural or-
ganisms. Despite nearly two decades of work since, evolved
morphologies are not obviously more complex or natural,
and the field seems to have hit a complexity ceiling. One
hypothesis for the lack of increased complexity is that most
work, including Sims’, evolved morphologies composed of
rigid elements, such as solid cubes and cylinders, limiting
the design space. A second hypothesis is that the encod-
ings of previous work have been overly regular, not allowing
complex regularities with variation. Here we test both hy-
potheses by evolving soft robots with multiple materials and
a powerful generative encoding called compositional pattern-
producing networks (CPPNs). Robots are selected for loco-
motion speed. We find that <insert different conclusions
since this is not really true: evolution does take advantage
of additional materials to produce faster, more diverse de-
signs>. We also found that CPPNs evolve faster robots than
a direct encoding control and that the CPPN morphologies
appear more natural.
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1. INTRODUCTION

In 1994, Karl Sims’ work entitled "Evolving Virtual Crea-
tures”[?] became an inspiration and a benchmark for the
natural, complex morphologies that evolutionary compu-
tation is capable of prodcuing. But nearly two decades
later, Sims’ benchmark still holds - despite constant ad-
vances in evolutionary computation and computational re-
sources. There any many hyoptheses as to why we have
failed to outshine Sims’ work.

One such hypothesis is that recent attempts have followed
the inspiration set by Sims’ to create morphologies from very
limited number of predefined, rigid elements (such as solid
blocks or cylinders). While this prodedure is able to ab-
stractly model the segments of limbs found in natural crea-
tures, it comes nowhere near the ability of biology to definte
morphology at a cellular level and create arbitrarily complex
shape and natural movement.

Another hypothesis is that the encodings of previous work
also limited the design space. Direct encodings lack the reg-
ularity or evolvability necessary to reasonably achive impres-
sive results, and overly regular indirect encodings constrict
the design space - not allowing complex regularities with
variation.

Here we take on both of these problems, and show that
complex, natural appearing and behaving robots are achiev-
able. We use VoxCAD, a voxel-based soft-body simulator to
allow the specification of a robot’s shape and material prop-
erties at a fine-grain resolution. We then use the powerful
generative encoding in HyperNEAT to evolve the robot form
and material makeup at each of these voxels.

We go on to demonstrate visually that the VoxCAD/HyperNEAT

combination is able to provide a great diversity of forms,
each with complex regularities with variation. We show that
a direct encoding is unable to create forms that look as im-
pressive or locomote as effectively. We also demonstrate the
ability for this system to scale to larger sizes or higher reso-
lutions, as well as to involve a greater diversity of materials.
We show that diversity of form and behavior can also be
increased (word choice?) with the use of various reward or
penalty functions, suggesting that such a system also has
the ability scale to create different forms for particular task
requirements.



2. BACKGROUND

incorporte this into intro/background?

3. METHODS

what we used.

3.1 HyperNEAT (do we want to use that name?

or call it CPPN-NEAT?)

it’s awesome. people at this conference should have some
background knowledge, but we still need a brief intro. brief,
jeff!

3.2 VoxCAD

also very cool. rob can proably talk about it in more depth
than I can, though I'm not sure (especially for this con-
frence) that we want to be dedicating a lot of page space to
the simulator. We simulated different materials that would
contract (like muscles), would remain stiff (like bone), or
would be maluable (like 777, why am a drawing blank here,
there must be something in the body that’s soft but not
muscle? organs aren’t really a great analogy here...). Thus
voxels (for example contractable ones) are like cells or fibers
(for example muscle fibers). Voxels are not like cupcakes...
unless those cupcakes were voxels.

3.2.1 MATERIALS

green = osciallotry phase contraction/expansion
light blue = passive soft material
red = counterphase contraction/expansion
dark blue = passive stiff material
In treatments spanning number of materials used, materials
were added in the order above (ex: two material treatments
consisted of green and light blue)

3.3 GAlib

we used it too. it’s a publicly avalible, out of the box GA
library from MIT in the late 90’s. (Does it even deserve it’s
own subsection? or just a line in the direct encoidng part of
results?)

4. RESULTS

we overloaded the wyo cluster with these babies, and here’s
what we got:

lots of figures and pretty pictures, link to videos (in foot-
notes?).

Show images of different kinds of locomotion for proof of
diveristy? (Scootcher, Jumpers, Walkers, etc.)

4.1 Direct v. Generative Encoding

hyperneat is awesome! we used all the same stuff (same
materials, same LEO genotype->phenotype encoding, same
simulator, etc.) with a direct encoding, and the results
looked like multi-color spaghetti and didn’t really move.

Figure of side-by-side champs for direct v. generative

Also Plot of material distribution for direct v. generative?

4.2 Material Types

soft-robots are meant to be soft. we tried make them
use hard stuff, but they resisted, it just wasn’t the point.
It may also be due to using only two phases of actuatable
materials...

Figure of side-by-side champs for each material param

Figure 1: time series of generative encoding

Figure 2: (left) image of direct encoding (time series
not applicable)

Figure 3: (right) if we do want to make any com-
parisons, this is an image Sims has of one of his
creatures on his own website
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Figure 4: fitness of direct encoding. TODO: decide
on final data set, plot against generative encoding,
use friendly labels, proof it in black and white

Plot of material distribution for each material param
Also plot fitness? Or just say not signficantly different
than all materials?

4.3 Penalty Fuctions?

give us different robot behaviors and material distribu-
tions. Can we quantatively describe behavior yet?

Figure of side-by-side champs for each penalty type

Plot of material distribution for each penalty type

Also plot fitness? Or just say not signficantly different
than no penalty?



4.0
3.5
n 3.0
25
£
©
S 2.0}
2
© 15
1.08f — 2012-12-17-10"3-noCost J
| — 2012-12-21-maxStiffness100
0.5 2012-12-21-maxStiffness300|4
— 2012-12-21-maxStiffness500
0.0 200 400 600 800 1000

generations

Figure 5: sweep of max stiffness (delete me?!).
TODO: decide on final data set, delete?, use friendly
labels, proof it in black and white
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Figure 6: sweep accross penalty functions - plot-
ting distance, not penalized fitness (delete me?!).
TODO: decide on final data set, delete?, use friendly
labels, proof it in black and white

4.4 SIZE

does this deserve it’s own subsection? Or is it just a stat-
ment we make (not even include plots?) Or is scalability
something we lean on more?

S. DISCUSSION

softbots = aweomse!

These thing are not at all trivial to design. Multiple de-
signers - including those with and without engineering back-
grounds - tried to design soft-robots by hand with the given
matrials and simulator. All noted the unexptected difficulty
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Figure 7: sweep across sizes (delete me?!). TODO:
decide on final data set (with complete 20°), delete?,
use friendly labels, proof it in black and white

of such a task. None were able to design an instance that
exceeded the performance of the evolutionary algorithm.

6. CONCLUSION

we are the best.
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